
KNOWLEDGE-INTENSIVE AND ENTITY-CENTRIC
NATURAL LANGUAGE PROCESSING

By

WENZHENG ZHANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Karl Stratos

And approved by

New Brunswick, New Jersey

August 2025

© 2025

Wenzheng Zhang

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Knowledge-Intensive and Entity-Centric

Natural Language Processing

by WENZHENG ZHANG

Dissertation Director: Karl Stratos

Accessing large-scale external knowledge while maintaining a consistent understanding of real-

world entities is essential for modern natural language processing (NLP) systems. This thesis

investigates two fundamental capabilities that support this objective: knowledge-intensive lan-

guage processing, which enables models to retrieve and integrate external information, and entity-

centric language understanding, which facilitates identifying, linking, and reasoning about enti-

ties in context.

We first explore knowledge-intensive language processing through the lens of retrieval-based

methods. We present a theoretical and empirical analysis of hard negatives in the Noise Contrastive

Estimation (NCE) training objective, improve multi-task retrieval by promoting task specialization

and propose a retrieval-augmented generation framework that allows models to express their infor-

mation needs implicitly, eliminating the need for human-specified queries.

Next, we focus on entity-centric language understanding. We introduce a novel approach that

reframes entity linking as an inverse open-domain question answering problem, addressing the

challenge of predicting mentions without knowing their corresponding entities, and naturally ex-

tending NCE to support multi-label retrieval. We also propose a simple yet effective sequence-

to-sequence model for coreference resolution, which maps input text to linearized coreference

annotations and achieves strong performance with no task-specific model design.

These contributions advance the development of NLP systems that can reason more effec-

tively over external knowledge and entities, enabling stronger performance on a wide range of

information-seeking and understanding tasks.

ACKNOWLEDGMENTS

The past five years at Rutgers have been an unforgettable and invaluable journey. I am deeply

grateful to all the people who have supported and inspired me along the way.

First and foremost, I extend my deepest thanks to my advisor, Karl Stratos. When I joined

Rutgers in 2020, I had a background in Physics and knew very little about computer science, let

alone natural language processing. It is truly remarkable that over the past five years, I have been

able to conduct research in NLP, and that is entirely due to Karl’s mentorship. His patience, knowl-

edge, and unwavering guidance—from teaching me basic Linux commands to helping me shape

my research identity—have been instrumental in my development. His brilliance and creativity

consistently inspire me; he has an exceptional ability to generate ideas and approach research

problems with deep insight. Karl always provided me with the freedom to explore ideas indepen-

dently while offering thoughtful and constructive feedback. His high standards of research quality

and taste have shaped my own aspirations as a researcher, reminding me to follow my curiosity

and strive for meaningful contributions. Beyond academics, he has also offered valuable advice on

life and career, for which I am immensely thankful.

I would also like to thank the members of my dissertation committee—Hao Wang, Abdeslam

Boularias, and Wei Xu—for their time, feedback, and support.

I am grateful to my co-authors, collaborators, and mentors, each of whom taught me so much.

I was fortunate to have summer internship opportunities that broadened my research horizons. I

sincerely thank Chenyan Xiong and Arnold Overwijk for their generous mentorship at Microsoft

in 2022, and Mingda Chen, Victoria Lin, and Scott Yih for their kind guidance at Meta FAIR in

2024.

Many thanks to my fellow students and friends at Rutgers. I thank Siwei Mai, Haizhou Shi,

and Xi Chen for encouraging me to stay active and for the many great conversations we shared. I

thank Kunpeng Song for both technical and non-technical discussions, and for generously sharing

his visitor pass so that my wife could access Meta’s Farley building during our internships. I also

thank Zhuohuan Li and Tongtong Zhong for many shared stroller walks and fun conversations

while we took our babies out together.

I thank my parents, Qigui Zhang and Anyun Hu, for their unwavering encouragement and

support. They have always listened patiently to my research updates, even when the topics were

unfamiliar. I also thank my sister, Ying Zhang, and my brother-in-law, Zhengyang Tan, for accom-

panying and caring for my parents when I could not be there in person.

Finally, I express my deepest gratitude to my wife, Yinxia Guo, for her love, patience, and end-

less support. She has been by my side through every high and low, maintaining a warm and loving

home. I am especially grateful to her for taking care of our newborn son, Charles Jiaheng Zhang,

almost entirely on her own during the earliest and most demanding months after his birth—while I

was juggling the pressures of job hunting and completing my dissertation. Her strength, patience,

and devotion made this journey possible for me.

TABLE OF CONTENTS

Abstract .

Acknowledgments .

List of Tables .

List of Figures .

List of Acronyms .

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Overview . 2

1.3 Contributions . 3

Chapter 2: Background . 5

2.1 Knowledge-Intensive Language Processing . 5

2.1.1 Information Retrieval . 5

2.1.1.1 Problem Formulation. 5

2.1.1.2 Existing Approaches . 6

2.1.1.3 Noise Contrastive Estimation (NCE) 8

2.1.1.4 Evaluation . 9

2.1.2 Retrieval-Augmented Generation (RAG) 10

2.1.2.1 Problem Formulation . 10

2.1.2.2 Existing Approaches . 11

2.1.2.3 Training . 11

2.1.2.4 Evaluation . 13

2.2 Entity-Centric Language Understanding . 14

2.2.1 Entity Linking . 15

2.2.1.1 Problem Formulation . 15

2.2.1.2 Existing Approaches . 15

2.2.2 Coreference Resolution . 16

2.2.2.1 Problem Formulation . 16

2.2.2.2 Existing Approaches . 16

2.2.2.3 Evaluation . 17

I Knowledge-Intensive Language Processing 19

Chapter 3: Hard Negatives in Noise Contrastive Estimation 20

3.1 Introduction . 20

3.2 Background . 22

3.2.1 Review of NCE . 22

3.2.2 Related Work . 23

3.3 Hard Negatives in NCE . 24

3.3.1 Gradient Estimation . 25

3.3.2 Adversarial Learning . 28

3.4 Score Function . 29

3.4.1 General Form . 29

3.4.2 Examples . 30

3.5 Experiments . 31

3.5.1 Task . 31

3.5.2 Architectures . 32

3.5.3 Optimization . 33

3.5.4 Bias . 35

3.5.5 Retrieval . 36

3.5.6 Results . 37

3.5.7 Qualitative Analysis . 37

3.5.8 Results on AIDA . 38

3.6 Conclusions . 39

Chapter 4: Promoting Task Specialization For Multi-Task Retrieval 40

4.1 Introduction . 40

4.2 Related Work . 41

4.3 Method . 43

4.3.1 Base Model . 44

4.3.2 Adaptive Learning . 45

4.3.2.1 Sensitivity normalization . 47

4.4 Experiments . 47

4.4.1 Setup . 47

4.4.2 Main Results . 48

4.4.3 Analysis . 51

4.4.3.1 Ablation Study . 51

4.4.3.2 Task Specialization . 53

4.4.3.3 Additional Benchmark . 54

4.5 Conclusions . 55

Chapter 5: Retrieval-Augmented Generation with Implicit Queries 57

5.1 Introduction . 57

5.2 Related Work . 60

5.3 Method . 61

5.3.1 Architecture . 61

5.3.2 Training . 63

5.3.2.1 Retrieval Objective . 64

5.3.3 Inference . 65

5.4 Experiment . 66

5.4.1 Experimental Setup . 66

5.4.2 Experimental Result . 69

5.5 Analysis . 71

5.5.1 Layer Group Boundary Ablation . 71

5.5.2 Retrieval Objective Ablation . 71

5.5.3 Effect of Query Templates . 72

5.5.4 Effect of Instruction Tuning for Retrieval 72

5.6 Conclusions . 72

II Entity-Centric Language Understanding 74

Chapter 6: Entity Linking as Question Answering . 75

6.1 Introduction . 75

6.2 Model . 77

6.2.1 Retriever . 79

6.2.2 Reader . 80

6.2.3 Inference . 81

6.3 Experiments . 81

6.3.1 Setting . 81

6.3.2 Results . 83

6.3.2.1 Other Practical Highlights . 85

6.3.3 Ablation Studies . 86

6.3.4 Error Analysis . 88

6.4 Related Work . 89

6.5 Conclusions . 90

Chapter 7: Sequence-to-Sequence Coreference Resolution 91

7.1 Introduction . 91

7.2 Related Work . 93

7.3 Seq2Seq Methods . 94

7.3.1 Linearization of the Coreference Annotation 95

7.3.2 Action Sequences . 96

7.3.3 Integer-Free Representation . 97

7.3.4 Mention Alignment . 98

7.4 Discussion . 99

7.5 Experiments . 100

7.5.1 Datasets . 100

7.5.2 Implementation Details . 101

7.5.3 Baselines . 101

7.5.4 Results . 103

7.5.4.1 English OntoNotes . 103

7.5.4.2 PreCo and LitBank . 105

7.5.5 Ablation Studies . 105

7.5.5.1 Action Sequence . 105

7.5.5.2 Decoder Input . 107

7.5.5.3 Pretrained Model . 107

7.5.6 Error Analysis . 107

7.6 Conclusions . 108

Chapter 8: Conclusions . 110

8.1 Summary . 110

8.2 Future Directions . 112

Appendices . 114

Appendix A: Appendix to Chapter 3 . 115

Appendix B: Appendix to Chapter 4 . 118

Appendix C: Appendix to Chapter 5 . 121

Appendix D: Appendix to Chapter 6 . 125

Appendix E: Appendix to Chapter 7 . 126

Acknowledgment of Previous Publications . 129

References . 130

LIST OF TABLES

3.1 Top-64 recalls over different choices of architecture and negative examples for a
retriever trained by NCE. Wu et al. [67] train a dual encoder by NCE with 10 hard
negatives. DUAL-(3.5) is DUAL trained with the score-adjusted loss (3.5). 35

3.2 Unnormalized accuracies with two-stage training. DAP refers to domain adaptive
pre-training on source and target domains. 36

3.3 A retrieval example with hard negative training on Zeshel. We use a SOM retriever
trained with random vs hard negatives (92.51 vs 94.66 in top-64 validation recall).
We show a validation mention (destruction) whose gold entity is retrieved by the
hard-negative model but not by the random-negative model. Top entities are shown
for each model (title boldfaced); the correct entity is Sack of Mournhold (check-
marked). 36

3.4 Test accuracies on AIDA CoNLL-YAGO. BLINK refers to the two-stage model
of Wu et al. [67] pretrained on Wikipedia. All our models are initialized from
the BLINK dual encoder and finetuned using all 5.9 million Wikipedia entities as
candidates. 38

4.1 Page-level R-precision on KILT validation data. Bold indicates the best model
and underline indicates the second. † and ∗ mark results from Chen et al. [92]
and Maillard et al. [81] respectively. The non-comparable models are trained on
additional data or use extra information. We list them only for reference not for
comparison. Taks-specific models use a separate retriever for each task while all
the other models use a single retriever across all the tasks. 49

4.2 Page-level R-precision on KILT test data. Bold indicates the best model and
underline indicates the second. †, ∗ and ‡ mark results from Chen et al. [92],
Maillard et al. [81] and Bevilacqua et al. [25] respectively. The non-comparable
models are trained on additional data or use extra information. We list them only
for reference not for comparison. 50

4.3 Ablation study results on KILT validation data. We report page-level R-precision.
Bold indicates the best variant. Each line makes a single or multiple changes from
the TACO model. The performance of the recent general multitask algorithms,
PCG [83], CGD [85] and GradNorm [86], are obtained from our own implementa-
tion. 50

4.4 Recall@100 on an additional benchmark containing MS-MARCO (MS), ZESHEL
(ZES), FEVER (FEV), and Natural Questions (NQ). 55

5.1 Prompt templates. We only use retrieval for knowledge-intensive tasks. For sim-
plicity, we list task categories for a subset of the instruction tuning datasets. See
Appendix C.4 for more detailed description. 67

5.2 Evaluation results for 8 knowledge-intensive tasks. We report exact match scores
for generation tasks and retrieval recall (shown in parentheses) for retrieval tasks.
Retrieval recall is not reported for FEV, as it is a classification task. All these
methods use retrieval augmentation. 68

5.3 Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using
Llama-3.2 3B as the base model, trained with different retrieval objectives. 69

5.4 Exact match scores and retrieval recall (shown in parentheses) for RA-DIT-Llama
using Llama-3.2 3B as the base model, evaluated with various query templates. In
the case of “no templates”, the inputs to the LLMs are used directly as queries. . . . 70

5.5 Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using
Llama-3.2 3B as the base model, trained with different combinations of instruction
tuning datasets. IT tasks refer to instruction tuning tasks, PD stands for phrase
denoising, and SG denotes sentence generation. 70

6.1 InKB Micro F1 on the in-domain and out-of-domain test sets on the GERBIL
benchmarking platform. For each dataset, bold indicates the best model and underline
indicates the second best. 84

6.2 Ablation study for the retriever module. Each line makes a single change from the
baseline retriever used in Table 6.1. We also compare with BM25. 87

6.3 Ablation study for the reader module. Each line makes a single change from the
baseline reader used in Table 6.1. Candidate entities are obtained from the baseline
retriever in Table 6.2 (except the oracle experiment). 87

6.4 Categorizing errors on the validation set passages. The number of passages in each
category is given in parentheses. G refers to the gold annotation; P refers to the
predicted annotation. 88

7.1 Data statistics for OntoNotes, LitBank, and PreCo datasets. The number of docu-
ments in each split, average word count per document, average mention count per
document, and average mention count per cluster are listed. 101

7.2 Results on the OntoNotes (CoNLL-12 English) test set. The average CoNLL F1
score of MUC, B3 and CEAFϕ4 is the main evaluation criterion. Models marked
with † are our implementation. ∗ marks models using additional training data. . . . 102

7.3 Results on Preco, Litbank test set. The average CoNLL F1 score of MUC, B3

and CEAFϕ4 is the evaluation metric. We report both the 10-fold cross-validation
results (official setting) and the results of split 0 (LitBank0) following Toshniwal et
al. [170]. Joint denotes training on the union of OntoNotes, PreCo and LitBank0.
* marks transfer learning results which uses additional pretraining. 104

7.4 Ablation study for sequence representations on OntoNotes development set. Aver-
age CoNLL F1 is reported. 106

7.5 Ablation study for decoder input on OntoNotes development set. Average CoNLL
F1 is reported. 107

7.6 Ablation study for pretrained model on OntoNotes development set. Average
CoNLL F1 is reported. 108

7.7 Error analysis on OntoNotes development set. We report mention detection F1 and
mention clustering average CoNLL F1. 108

B.1 Data statistics and some data-related hyperparameters for our experiments. B de-
notes batch size. L denotes query maximum input length excluding the task prefix. 119

B.2 Training hyperparameters for training our TACO-DR model. We use Adam[96]
with learning rate 5e − 6. We use linear learning rate schedule with warmup raio
0.1. Each query uses 2 hard negatives for training. Each ANCE episode trains for
3 epochs. Total batch size of all task batches are 120. 119

B.3 Average page-level R-precision w.r.t softmax temperature for our adaptive learning 120

B.4 Average page-level R-precision w.r.t momentum factor for our adaptive learning . 120

B.5 Passage-level R-precision on KILT validation data. Bold indicates the best model
and underline indicates the second. ∗ marks results from Maillard et al. [81].Only
page-level R-precision is defined for AIDA. 120

C.1 Performance of different passage encoding strategies. 121

C.2 Performance of freezing different passage representations on NQ dev set with top-
10 Contriever-MSMARCO retrieved passages. 122

C.3 The results for various compression techniques. 123

C.4 Prompt templates. We only use retrieval for knowledge-intensive tasks. 123

D.1 GERBIL test scores with and without using the first document token as document-
level topical information. 125

LIST OF FIGURES

3.1 Synthetic experiments. We use a feedforward network to estimate the population
distribution by minimizing sampled cross entropy in each step (x-axis). We show
the NCE loss (left) and the norm of the gradient bias (right) using hard vs random
negatives. 34

4.1 Task entropy histograms for model variants . 53

4.2 Task-specific sensitivity density distribution on the training data of four KILT tasks.
The final models are used. The x-axis is sensitivity, and we drop outliers that are
far from the median to ease visualization. 54

5.1 Diagram illustrating the inference process of ImpRAG on the entity linking task.
We divide decoder-only LLMs into three layer groups for specialized finetuning:
bottom (green), middle (red), and top (blue). The bottom layers are optimized for
retrieval tasks. The middle and top layers handle the reading of retrieved passages,
with cross-attention disabled in the top layers to reduce memory consumption.
Standard RAG systems would require a task-specific design of queries (e.g., use
the substring “British” as the query in the shown example). In contrast, ImpRAG
uses implicit queries, eliminating the need for explicit specification of queries and
allowing models to generalize across unseen tasks with varied formats. 58

5.2 Exact match and retrieval recall on the NQ dev set using Llama-3.2 3B with differ-
ent values of b (left side) and t (right side). When varying one layer boundary, we
keep the other constant. 69

6.1 Example prediction by EntQA taken from AIDA-A. Given a passage, the retriever
module ranks K candidate entities, then the reader module finds mentions of each
entity or rejects it (marked by ✗). Both modules use entity descriptions (not shown).
In this example, it predicts the span “England” for the 11th candidate England
cricket team but rejects the 35th candidate England (the country). 82

LIST OF ACRONYMS

ANN Approximate Nearest Neighbor

DocIDs Document Identifiers

IR Information Retrieval

KB Knowledge Base

NCE Noise Contrastive Estimation

RAG Retrieval-Augmented Generation

Seq2Seq Sequence-to-Sequence

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent advances in pretrained language models have led to impressive performance across a wide

range of NLP tasks [1, 2, 3, 4, 5]. However, for tasks that are knowledge-intensive or entity-rich,

existing models still struggle to provide reliable and accurate solutions. These tasks require not

only access to external knowledge beyond what is encoded in model parameters, but also a deep

understanding of entities mentioned in the text and how they interact.

To address these challenges, two complementary paradigms have emerged: knowledge-intensive

language processing, which focuses on retrieving and integrating external knowledge [6, 7], and

entity-centric language understanding, which focuses on identifying, linking, and reasoning about

entities and their references in text [8, 9]. These two components often work in tandem to support

complex reasoning and generation in knowledge-rich tasks.

Consider the following example of an open-domain question answering task with contextual

input:

Nikola Tesla and Thomas Edison were both pioneering inventors in the field of elec-

tricity. Edison was known for his work on the electric light bulb and direct current

(DC) systems, while Tesla championed alternating current (AC). In 1884, Tesla em-

igrated to the United States and briefly worked for Edison. However, the two had

fundamental disagreements over electrical systems. Eventually, he left to pursue his

own ideas and began working independently.

Question: What did he focus on after leaving?

To answer this question, the model must first perform entity linking to map ”Nikola Tesla” and

”Thomas Edison” to corresponding entries in a knowledge base. It must also resolve the pronoun

2

”he” in the question via coreference resolution, determining that it refers to Tesla, not Edison.

Since the passage itself does not contain enough information to answer the question, the model

must then retrieve relevant background knowledge about Tesla’s later work using information re-

trieval, and finally produce a fluent, grounded response via retrieval-augmented generation.

This example illustrates how entity-centric reasoning and knowledge-intensive processing must

be integrated to achieve accurate, interpretable language understanding. This thesis investigates

methods that advance both paradigms, with the ultimate goal of building NLP systems that can

access external knowledge, resolve ambiguity, and reason coherently about real-world entities.

1.2 Overview

This thesis is organized as follows. Chapter 2 provides background on both knowledge-intensive

language processing and entity-centric language understanding.

Part I focuses on knowledge-intensive language processing. We begin with a theoretical anal-

ysis of hard negatives in the information retrieval training objective, Noise Contrastive Estimation

(NCE) (Chapter 3). We then propose a method to improve multi-task retrieval across multiple

knowledge-intensive tasks by promoting task specialty (Chapter 4). Finally, we introduce a query-

free Retrieval-Augmented Generation (RAG) system that unifies retrieval and generation, enabling

models to implicitly express information needs rather than relying on human-specified queries

(Chapter 5).

Part II turns to entity-centric language understanding, focusing on entity linking and coref-

erence resolution. We first present an approach that reformulates entity linking as an inverse

open-domain question answering problem, avoiding the dilemma of predicting mentions with-

out knowing their corresponding entities (Chapter 6). We then introduce an extremely simple yet

high-performing Sequence-to-Sequence (Seq2Seq) method for coreference resolution, mapping an

input document to a tagged sequence that encodes its coreference annotations (Chapter 7).

Finally, Chapter 8 offers concluding remarks and outlines potential directions for future work.

3

1.3 Contributions

The main contributions of this thesis are summarized as follows:

• Theoretical analysis of hard negatives in NCE. We develop analytical tools to study the

role of hard negatives in the NCE objective and derive a general score function form that uni-

fies various text retrieval model architectures. We show, both theoretically and empirically,

that setting the negative distribution equal to the model distribution reduces bias regardless

of the score function used.

• Multi-label NCE for multi-label retrieval. We extend the standard NCE framework to a

multi-label formulation, enabling retrieval with multiple relevant documents per query. We

demonstrate superior performance over alternative multi-label objectives through empirical

evaluation on entity linking task.

• Task-specialized multi-task retrieval. We show that a single multi-task retriever can out-

perform task-specific retrievers by promoting task specialization. Our approach combines

a well-chosen pretrained base model, task-specific prompting, and an adaptive learning

method that encourages parameters to specialize for individual tasks.

• Query-free retrieval-augmented generation. We propose a query-free RAG system that

integrates retrieval and generation into a unified model that allows the model to express

information needs implicitly, without human-specified queries. This query-free RAG ap-

proach substantially improves both retrieval and generation performance across multiple

knowledge-intensive tasks.

• Entity linking as inverse open-domain QA. We reformulate entity linking as an inverse

open-domain question answering task, fundamentally resolving the challenge in prior ap-

proaches of predicting mentions without knowing their corresponding entities. Our method

leverages recent advances in dense retrieval and open-domain QA, removes the dependency

on Knowledge Base (KB)-specific mention–candidate dictionaries, works for KBs without

4

such resources, and is data-efficient enough to achieve state-of-the-art results within an aca-

demic compute budget.

• Simple Seq2Seq coreference resolution. We introduce an extremely simple yet flexible

sequence-to-sequence approach to coreference resolution, treating coreference annotation

as a target sequence generated from the input text. This method achieves state-of-the-art

performance without specialized architectures or extensive hyperparameter tuning.

5

CHAPTER 2

BACKGROUND

2.1 Knowledge-Intensive Language Processing

Knowledge-intensive language processing refers to tasks whose solutions require access to large

external knowledge sources (e.g., Wikipedia or other document collections), rather than relying

solely on the parametric knowledge encoded in model weights [6, 7].

For example, in open-domain question answering [10], a system must retrieve relevant passages

from a large corpus to answer factoid questions. In fact verification [11], models must gather

supporting or refuting evidence from a broad document collection. In entity linking [8], models

retrieve candidate entities from a large entity collection and link them to entity mentions identified

in the input text.

In this thesis, we focus on two tightly connected components of knowledge-intensive language

processing: Information Retrieval (IR) from large knowledge sources as an intermediate step, and

Retrieval-Augmented Generation (RAG) as an end-to-end solution that integrates retrieval with

generation.

2.1.1 Information Retrieval

2.1.1.1 Problem Formulation.

LetY = y1, . . . , yN be a large corpus consisting ofN documents, whereN can range from millions

to billions. Given a query x (such as a question, a mention context, or a task input), the goal of IR

is to efficiently retrieve a small subset of relevant documents, denoted as TopK(x) ⊂ Y , that are

most relevant to the query x.

6

2.1.1.2 Existing Approaches

Classical (term-based) IR. In classical information retrieval, both queries x and documents y are

represented as high-dimensional but sparse vectors over the vocabulary V , where each dimension

corresponds to a term. A standard representation is the tf–idf weighted vector [12]. For a term t in

document y, its weight is

wt,y = tf(t, y) · idf(t), (2.1)

where tf(t, y) is the frequency of t in y and

idf(t) = log
N + 1

nt + 1
, (2.2)

withN the total number of documents and nt the number of documents containing t. The similarity

between a query x and document y is then often computed via cosine similarity of their tf–idf

vectors.

A more effective and widely used scoring function is BM25 [13], which incorporates term

frequency saturation and document length normalization:

BM25(x, y) =
∑
t∈x

log
N − nt + 0.5

nt + 0.5
· f(t, y) (k1 + 1)

f(t, y) + k1

(
1− b+ b |y|

avgdl

) , (2.3)

where f(t, y) is the frequency of term t in y, |y| is the document length, avgdl is the average

document length in the collection, and k1, b are hyperparameters.

Term-based methods are efficient, interpretable, and can be implemented at web scale with

inverted indexes. However, they rely solely on exact lexical overlap, making them vulnerable to

the vocabulary mismatch problem (e.g., “car” vs. “automobile”). This motivates the shift toward

model-based dense retrieval, which learns semantic representations beyond surface forms, as we

will discuss in the next paragraph.

7

Dense Retrieval. Dense retrieval methods learn dense vector representations for both queries

x and documents y, enabling similarity computation in a continuous vector space [14, 15, 16].

These methods are typically built on a learnable Dual-Encoder architecture [17, 18], where a query

encoder encθX : X → Rd and a document encoder encθY : Y → Rd independently map inputs to

a shared embedding space. These encoders are often based on pretrained Transformers [1, 2]; for

instance, by extracting the [CLS] token from the final layer of BERT [1].

The relevance score between a query x and document y is computed via inner product:

sθ(x, y) =
〈
encθX(x), enc

θ
Y (y)

〉
. (2.4)

The retriever returns the top-k most relevant documents as:

Topk(x) = arg top-k
y∈Y

sθ(x, y), (2.5)

which can be efficiently computed using Approximate Nearest Neighbor (ANN) search over all

precomputed document embeddings produced offline by the trained document encoder encθY , using

libraries such as FAISS [19].

Training the Dual-Encoder modules encθX and encθY typically involves a NCE objective (de-

tailed in Section 2.1.1.3), which encourages high similarity for relevant query-document pairs and

low similarity for irrelevant ones.

In addition to standard Dual-Encoder, late-interaction models [20, 21] retain token-level granu-

larity through interaction and aggregation layers, enabling finer-grained semantic alignment at the

cost of efficiency. We provide a detailed comparison of score functions in Section 3.4.

Overall, dense retrieval with Dual-Encoder is widely adopted due to its strong balance of effi-

ciency, performance, scalability, flexibility, and generalizability.

Generative Retrieval. For completeness, we briefly review generative IR. Unlike dense retrieval,

generative retrieval reformulates the task as a sequence-to-sequence (Seq2Seq) problem: given

8

a query x as input, the model generates Document Identifiers (DocIDs) corresponding to rele-

vant documents [22, 23]. This approach typically involves two stages of training—document-to-

DocIDs and query-to-DocIDs—to align queries with relevant documents, which introduces addi-

tional training complexity.

While generative IR is conceptually novel and performs well on small-scale knowledge bases,

it faces significant challenges. Designing effective discrete DocIDs is nontrivial[23, 24, 25, 26],

limiting scalability [27]. Furthermore, adapting to dynamic or frequently updated knowledge bases

is difficult due to the static nature of tokenized identifiers.

As a result, generative IR has seen limited adoption in large-scale settings, whereas dense

retrieval remains the dominant and more practical paradigm. In this thesis, we focus exclusively

on dense retrieval, and include generative IR here for completeness.

2.1.1.3 Noise Contrastive Estimation (NCE)

A widely used training objective for dense retrieval models, such as dual-encoder architectures, is

Noise Contrastive Estimation (NCE) [28, 29, 30]. NCE trains the model to assign higher scores to

positive query-document pairs (x, y+1) than to a set of negative documents y−2:K . Without loss of

generality, we assume the positive example is always placed in the first position, i.e., y1 = y+1 .

Given a set of K ≥ 2 candidates consisting of one positive and K−1 negatives, the NCE

objective is defined as:

JNCE(θ) = E
(x,y+1)∼pop

y−2:K∼qK−1

[
− log πθ(y

+
1 |x, y1:K)

]
(2.6)

where

πθ(k|x, y1:K) =
exp (sθ(x, yk))∑K

k′=1 exp (sθ(x, yk′))
(2.7)

and sθ(x, y) denotes the relevance score between query x and document y.

9

The negatives y2:K are sampled independently from a noise distribution q over the corpus Y .

Common choices for q include the uniform distribution q(y) = 1/|Y| and the marginal distribution

q(y) = P(y).

In practice, it is common to use in-batch negatives[31], which treat the positives of other queries

within the same batch as negatives. This improves training efficiency by amortizing negative sam-

pling. Additionally, hard-negative mining[15, 32] is often used to sample more challenging nega-

tives, which can lead to better model performance by increasing training difficulty.

2.1.1.4 Evaluation

The goal of retrieval is to return relevant items for a given query. Depending on the task and

application-specific priorities, different evaluation metrics are used to capture various aspects of

retrieval quality. Below, we review the most common retrieval metrics: Recall@k, MRR@k, and

(N)DCG@k, assuming there are n queries and that k items are retrieved for each query.

Recall@k. Recall@k measures the proportion of relevant items that are successfully retrieved

among the top-k candidates. In multi-label or multi-relevant retrieval settings, where each query

may have multiple ground-truth relevant items, Recall@k is computed as:

Recall@k =

∑n
i=1 |Topk(xi) ∩ Yi+|∑n

i=1

∣∣Y+
i

∣∣ , (2.8)

where xi is the i-th query, Topk(xi) is the set of top-k retrieved items, and Y+
i is the set of ground-

truth relevant items for xi. Recall@k is suitable when coverage is important—i.e., when we care

about retrieving as many relevant items as possible, even if they are not ranked at the top.

Mean Reciprocal Rank (MRR@k). MRR evaluates how early the first relevant item appears in

the ranking. It is defined as the mean of the reciprocal rank of the first relevant item for each query:

MRR =
1

n

n∑
i=1

1[ranki ≤ k] · 1

ranki
, (2.9)

10

where ranki is the rank position of the first relevant item for query xi. MRR is especially useful

when early precision is important—e.g., when the user is expected to interact only with the top

result, such as in FAQ matching or dialogue response retrieval.

Discounted Cumulative Gain (DCG@k) and Normalized DCG (NDCG@k). DCG considers

both the relevance and the position of retrieved items, assigning higher weight to relevant items

appearing higher in the ranked list. It is defined as:

DCG@k =
k∑

j=1

relj
log2(j + 1)

, (2.10)

where relj is the graded relevance (e.g., 0/1 for binary, or a score) of the item at position j.

NDCG@k normalizes DCG by the maximum possible DCG (IDCG) for each query:

NDCG@k =
DCG@k

IDCG@k
. (2.11)

(N)DCG is appropriate when ranking quality matters—i.e., we care not only about retrieving rele-

vant items but also about ranking them appropriately. This is particularly relevant in web search,

product recommendation, or reranking tasks.

2.1.2 Retrieval-Augmented Generation (RAG)

2.1.2.1 Problem Formulation

Retrieval-Augmented Generation (RAG) provides an end-to-end framework for solving knowledge-

intensive NLP tasks [7, 33, 34]. It consists of two components: a retriever and a generator. The

retriever rθ(y|x) selects a small set of relevant documents y = (y1, . . . , yk) from a large knowl-

edge base, as described in Section 2.1.1. The generator gϕ(a|x, y) then produces the final output

a conditioned on the original input x and the retrieved documents y. The generator can be instan-

tiated with various pretrained language models, ranging from small-scale sequence-to-sequence

models [2, 35] to large-scale LLMs [4, 5].

11

2.1.2.2 Existing Approaches

Early RAG systems explored two parallel lines of development: pipeline training and joint train-

ing. Pipeline approaches [31, 36] train the retriever and generator independently—first training a

retriever to fetch relevant documents, followed by training a generator on the fixed retrieved re-

sults. In contrast, joint training methods [33, 7] treat the retrieved documents as latent variables

and optimize the retriever and generator simultaneously in an end-to-end fashion.

Subsequent research has further advanced the interaction between retrievers and generators by

distilling supervision signals from the generator into the retriever. The key observation is that the

log-likelihood of producing ground-truth answers increases when conditioned on relevant docu-

ments and decreases when conditioned on irrelevant ones. These likelihood-based signals provide

a natural training objective for the retriever and have been exploited in multiple ways: through

pipeline training [37], iterative instruction tuning [38], joint training [39], or by freezing the gen-

erator as a powerful large language model (LLM) and updating only the retriever with the distilled

supervision [40].

Another line of work explores adaptive retrieval, where the model dynamically triggers re-

trieval—potentially multiple times during generation—using different strategies such as prompt-

ing [41, 42, 43], supervised learning [44], or reinforcement learning [45].

2.1.2.3 Training

Pipeline Training. In pipeline training, the retriever and generator are trained separately. The

retriever is first trained using the Noise Contrastive Estimation (NCE) objective as described in

Section 2.1.1.3. Once trained, it is used to retrieve documents for each input query. These fixed

documents are then used to train the generator, which learns to generate answers conditioned on

both the input and the retrieved documents. The generator is trained with the standard conditional

language modeling loss:

12

Jgen(ϕ) = − E
(x,a)∼pop
y1:k∼rθ(y|x)

[log gϕ(a | x, y1:k)] , (2.12)

where (x, a) is a training example with input x and target answer a, and y1:k are the top-k

documents retrieved by the fixed retriever.

Joint Training. Joint training optimizes the retriever and generator together by treating the re-

trieved documents as latent variables. The goal is to maximize the marginal likelihood of the

correct answer across all possible retrieved document sets:

Jjoint(θ, ϕ) = − E
(x,a)∼pop

[
log
∑
y1:k

rθ(y1:k | x) · gϕ(a | x, y1:k)

]
(2.13)

In practice, the summation over all possible document sets is intractable and is approximated

using top-k documents retrieved by the current retriever. This approach allows the generator to

backpropagate supervision signals to the retriever through the marginal likelihood.

Generator Supervises Retriever. To further enhance retriever quality, the generator’s output can

be used to distill supervision back to the retriever. While various signals such as attention weights

or token probabilities can be used, we focus on perplexity-based distillation, which has shown

strong empirical performance and broad applicability.

In this setting, the generator defines a teacher distribution over the retrieved documents based

on the likelihood of generating the correct answer:

pgen
ϕ (yi | x, a) =

gϕ(a | x, yi)∑k
j=1 gϕ(a | x, yj)

, (2.14)

13

where gϕ(a | x, yi) is the likelihood of the correct answer given input x and document yi. The

retriever is then trained to match this distribution with its own output distribution rθ(yi | x) by

minimizing the KL divergence:

Jdistill(θ) = KL
(
pgen
ϕ (· | x, a) ∥ rθ(· | x)

)
. (2.15)

Here, pgen
ϕ (· | x, a) indicates that gradients are not backpropagated through the target distribu-

tion. This encourages the retriever to assign higher probabilities to documents that the generator

finds more helpful for answer generation, aligning both components for better end-to-end perfor-

mance.

2.1.2.4 Evaluation

Since a Retrieval-Augmented Generation (RAG) system consists of both a retriever and a genera-

tor, evaluation typically considers both components.

For the retriever, we use the metrics discussed in Section 2.1.1.4, such as Recall@k, MRR, and

(N)DCG, which assess how well the retriever selects relevant documents.

For the generator, evaluation depends on the specific knowledge-intensive task. Below, we

outline common metrics used for widely studied tasks:

Open-Domain Question Answering. We use Exact Match (EM) to evaluate whether the gener-

ated answer exactly matches the ground-truth answer (ignoring case, punctuation, and articles):

EM =
1

n

n∑
i=1

1[normalize(apred
i) = normalize(agold

i)], (2.16)

where apred
i is the generated answer, agold

i is the ground-truth answer, and normalize(·) removes

articles, punctuation, and lowercases the string.

14

Fact Verification. We use Accuracy to evaluate whether the predicted label (e.g., SUPPORTS,

REFUTES, NOT ENOUGH INFO) matches the ground-truth label:

Accuracy =
1

n

n∑
i=1

1[ŷi = yi], (2.17)

where ŷi is the predicted label and yi is the true label.

Entity Linking. We evaluate entity linking using Precision, Recall, and F1, computed over pre-

dicted and gold mention-entity pairs:

Precision =
|Pred ∩ Gold|
|Pred|

, Recall =
|Pred ∩ Gold|
|Gold|

, F1 = 2 · Precision · Recall
Precision + Recall

. (2.18)

Each pair is a tuple (mention start, mention end, entity name), representing

the span and the linked entity. A prediction is correct if it exactly matches the gold span and entity.

2.2 Entity-Centric Language Understanding

Entity-centric language understanding refers to the capability of a system to recognize, track, and

reason about entities mentioned in text. This includes identifying entity mentions, resolving am-

biguities, linking them to structured knowledge bases, and understanding how different mentions

refer to the same real-world entity across and within documents. Such understanding is crucial for

coherent and grounded natural language understanding, especially in knowledge-rich applications

like question answering, summarization, and information extraction.

In this thesis, we focus on two tightly connected core tasks in this domain: Entity Linking (EL)

and Coreference Resolution (CR). Entity Linking identifies and maps entity mentions in text to

corresponding entries in a knowledge base. Coreference Resolution clusters mentions that refer to

the same entity, enabling discourse-level understanding.

15

2.2.1 Entity Linking

2.2.1.1 Problem Formulation

Entity Linking (EL) involves two sub-tasks: (1) identifying potentially ambiguous mention spans

in a document that refer to entities, and (2) linking each mention span to the correct entity in a

knowledge base (KB). Formally, let E denote the set of entities in a KB (e.g., Wikipedia articles),

and let X = x1, . . . , xn be the set of documents, each of length up to Tmax.

The task is to map x ∈ X to y ∈ P(Y(x)) where Y(x) = {(s, t, e) : 1 ≤ s ≤ t ≤ |x| , e ∈ E}

is the set of all possible linked spans in x and P is the power set.

The output space is exponentially large: O(2T 2
max·|E|). Given that |E| is typically in the millions

(e.g., 6M for Wikipedia) and documents can be long (e.g., Tmax > 3000 in AIDA), exhaustive

search is computationally infeasible.

EL models are evaluated using precision, recall, and F1 over correctly predicted (mention,

entity) pairs, as discussed in Section 2.1.2.4.

2.2.1.2 Existing Approaches

Due to the exponential size of the search space, prior work typically decomposes the entity linking

task into two subproblems: Mention Detection (MD), which identifies candidate mention spans

in the input document, and Entity Disambiguation (ED), which links each detected mention to its

corresponding entity in a knowledge base.

Some approaches assume gold or pre-annotated mentions and focus solely on ED [46]. Others

adopt a pipeline strategy by first applying an off-the-shelf named entity recognition (NER) system

to detect mentions, followed by ED to resolve them (MD→ED pipeline)[47, 48, 49].

More recent work proposes end-to-end models that jointly perform MD and ED. These models

typically use beam search to explore candidate spans and entities, either through embedding-based

similarity scoring [8] or by casting the task as a constrained generative retrieval problem [22].

16

2.2.2 Coreference Resolution

2.2.2.1 Problem Formulation

Coreference Resolution (CR) is the task of identifying and clustering textual mentions that refer

to the same real-world entity. Formally, let X = x1, . . . , xn denote a set of documents, each

with length up to Tmax. The goal is to map a document x ∈ X to a set y ∈ P(Y(x)), where

Y(x) = {(s, t, c) : 1 ≤ s ≤ t ≤ |x| , 1 ≤ c ≤ C} represents all possible clustered mention spans

in x. Here, s and t denote the start and end indices of a span, respectively, and c indicates the

cluster ID. P is the power set.

The number of clusters C varies dynamically with each input x, and the number of mentions

within each cluster is also variable. Additionally, mention spans can be nested, further increas-

ing the complexity of the task. These structural and combinatorial properties make coreference

resolution particularly challenging.

2.2.2.2 Existing Approaches

The seminal work by Lee et al. [9], followed by a series of improvements [50, 51, 52], established

a strong foundation for coreference resolution by computing span-level representations for all pos-

sible mention spans in a document. Mention scores are computed via projection layers, while

coreference scores for mention pairs are calculated using the dot product of their span embed-

dings. The model then jointly maximizes the likelihood of gold coreference clusters by combining

mention and pairwise coreference scores. To make this approach tractable, various pruning strate-

gies are employed—such as limiting spans to a maximum length L, retaining only the top λT

highest-scoring spans, and restricting each mention to at most K candidate antecedents. Although

these models are highly effective, they tend to be task-specific and require careful hyperparameter

tuning and engineering.

More recent work explores alternative formulations leveraging pretrained sequence-to-sequence

models [2, 35]. For example, Liu et al. [53] propose an autoregressive, multi-level pointer network

17

for bracket-based generation. Their model predicts mention spans and coreference links using dot

product similarity between bracket embeddings, with separate heads for span pairing and corefer-

ence resolution. Bohnet et al. [54] introduce a transition-based approach, simulating a carefully

designed state-action space through a seq2seq model that processes one state at a time. Other ef-

forts attempt to cast coreference resolution directly as a sequence-to-sequence task. Urbizu et al.

[55] present a proof-of-concept that generates bracketed cluster annotations (e.g., “(0 – – 0) – (1

– (2) — 1)”) using a decoder that only outputs symbolic annotations without access to document

content, resulting in poor performance (e.g., 66.5 vs. 78.8 B3 on ARRAU). Similarly, Paolini et al.

[56] propose translating annotated clusters into target sequences by referencing previous predicted

mentions, but fail to achieve competitive results on standard benchmarks.

2.2.2.3 Evaluation

Coreference resolution is typically evaluated using three standard metrics: MUC, B3, and CEAFϕ,

which capture different aspects of clustering performance. The CoNLL-2012 shared task recom-

mends using the average F1 score of these metrics as the final evaluation.

Let M be the set of all mentions in a document. Let G = {G1, G2, . . . , G|G|} be the set of gold

coreference clusters and S = {S1, S2, . . . , S|S|} be the set of predicted (system) clusters. For a

mention m ∈M , let CG(m) and CS(m) denote its gold and predicted clusters, respectively.

MUC [57] MUC treats coreference resolution as a link prediction problem.

PrecisionMUC =

∑
Si∈S

(|Si| − |P (Si)|)∑
Si∈S

(|Si| − 1)
(2.19)

RecallMUC =

∑
Gi∈G

(|Gi| − |P (Gi)|)∑
Gi∈G

(|Gi| − 1)
(2.20)

where P (Si) and P (Gi) are the number of partitions induced by aligning clusters in S and G.

18

B3 [58] B3 computes precision and recall at the mention level:

PrecisionB3 =
1

|M |
∑
m∈M

|CG(m) ∩ CS(m)|
|CS(m)|

(2.21)

RecallB3 =
1

|M |
∑
m∈M

|CG(m) ∩ CS(m)|
|CG(m)|

(2.22)

CEAFϕ [59] CEAFϕ finds an optimal 1-1 alignment between predicted and gold clusters based

on similarity:

ϕ(Gi, Sj) = |Gi ∩ Sj| (2.23)

π = arg max
1-1 mapping

∑
(Gi,Sπ(i))

ϕ(Gi, Sπ(i)) (2.24)

PrecisionCEAFϕ
=

∑
(Gi,Sπ(i))

|Gi ∩ Sπ(i)|∑
Sj∈S |Sj|

(2.25)

RecallCEAFϕ
=

∑
(Gi,Sπ(i))

|Gi ∩ Sπ(i)|∑
Gi∈G |Gi|

(2.26)

F1 Score and CoNLL Score Each metric computes F1 as the harmonic mean:

F1 =
2 · P ·R
P +R

(2.27)

The overall CoNLL score is the average of the F1 scores from the three metrics:

CoNLL F1 =
1

3

(
F1MUC + F1B3 + F1CEAFϕ

)
(2.28)

Part I

Knowledge-Intensive Language Processing

19

20

CHAPTER 3

HARD NEGATIVES IN NOISE CONTRASTIVE ESTIMATION

This chapter is adapted from joint work with Karl Stratos entitled “ Understanding Hard Negatives

in Noise Contrastive Estimation” [60].

The choice of negative examples is important in noise contrastive estimation. Recent works

find that hard negatives—highest-scoring incorrect examples under the model—are effective in

practice, but they are used without a formal justification. We develop analytical tools to understand

the role of hard negatives. Specifically, we view the contrastive loss as a biased estimator of the

gradient of the cross-entropy loss, and show both theoretically and empirically that setting the

negative distribution to be the model distribution results in bias reduction. We also derive a general

form of the score function that unifies various architectures used in text retrieval. By combining

hard negatives with appropriate score functions, we obtain strong results on the challenging task

of zero-shot entity linking.

3.1 Introduction

Noise contrastive estimation (NCE) is a widely used approach to large-scale classification and

retrieval. It estimates a score function of input-label pairs by a sampled softmax objective: given

a correct pair (x, y1), choose negative examples y2 . . . yK and maximize the probability of (x, y1)

in a softmax over the scores of (x, y1) . . . (x, yK). NCE has been successful in many applications,

including information retrieval [61], entity linking [15], and open-domain question answering [31].

It is well known that making negatives “hard” can be empirically beneficial. For example,

Gillick et al. [15] propose a hard negative mining strategy in which highest-scoring incorrect labels

under the current model are chosen as negatives. Some works even manually include difficult

examples based on external information such as a ranking function [31] or a knowledge base [62].

While it is intuitive that such hard negatives help improve the final model by making the learn-

21

ing task more challenging, they are often used without a formal justification. Existing theoretical

results in contrastive learning are not suitable for understanding hard negatives since they focus

on unconditional negative distributions [28, 29, 30, 63] or consider a modified loss divergent from

practice [64].

In this chapter, we develop analytical tools to understand the role of hard negatives. We formal-

ize hard-negative NCE with a realistic loss (3.6) using a general conditional negative distribution,

and view it as a biased estimator of the gradient of the cross-entropy loss. We give a simple analy-

sis of the bias (Theorem 3.3.1). We then consider setting the negative distribution to be the model

distribution, which recovers the hard negative mining strategy of Gillick et al. [15], and show that it

yields an unbiased gradient estimator when the model is optimal (Theorem 3.3.2). We complement

the gradient-based perspective with an adversarial formulation (Theorem 3.3.3).

The choice of architecture to parametrize the score function is another key element in NCE.

There is a surge of interest in developing efficient cross-attentional architectures [21, 20, 65], but

they often address different tasks and lack direct comparisons. We give a single algebraic form

of the score function (3.10) that subsumes and generalizes these works, and directly compare a

spectrum of architectures it induces.

We present experiments on the challenging task of zero-shot entity linking [66]. We calculate

empirical estimates of the bias of the gradient estimator to verify our analysis, and systematically

explore the joint space of negative examples and architectures. We have clear practical recommen-

dations: (i) hard negative mining always improves performance for all architectures, and (ii) the

sum-of-max encoder [20] yields the best recall in entity retrieval. Our final model combines the

sum-of-max retriever with a BERT-based joint reranker to achieve 67.1% unnormalized accuracy:

a 4.1% absolute improvement over Wu et al. [67]. We also present complementary experiments

on AIDA CoNLL-YAGO [47] in which we finetune a Wikipedia-pretrained dual encoder with

hard-negative NCE and show a 6% absolute improvement in accuracy.

22

3.2 Background

3.2.1 Review of NCE

Let X and Y denote input and label spaces. We assume |Y| <∞ for simplicity. Let pop denote a

joint population distribution overX×Y . We define a score function sθ : X×Y → R differentiable

in θ ∈ Rd. Given sampling access to pop, we wish to estimate θ such that the classifier x 7→

argmaxy∈Y sθ(x, y) (breaking ties arbitrarily) has the optimal expected zero-one loss. We can

reduce the problem to conditional density estimation. Given x ∈ X , define

pθ(y|x) =
exp (sθ(x, y))∑

y′∈Y exp (sθ(x, y′))
(3.1)

for all y ∈ Y . Let θ∗ denote a minimizer of the cross-entropy loss:

JCE(θ) = E
(x,y)∼pop

[− log pθ(y|x)] (3.2)

If the score function is sufficiently expressive, θ∗ satisfies pθ∗(y|x) = pop(y|x) by the usual

property of cross entropy. This implies that sθ∗ can be used as an optimal classifier.

The cross-entropy loss is difficult to optimize when Y is large since the normalization term in

(3.1) is expensive to calculate. In NCE, we dodge this difficulty by subsampling. Given x ∈ X

and any K labels y1:K = (y1 . . . yK) ∈ YK , define

πθ(k|x, y1:K) =
exp (sθ(x, yk))∑K

k′=1 exp (sθ(x, yk′))
(3.3)

for all 1 ≤ k ≤ K. When K ≪ |Y|, (3.3) is significantly cheaper to calculate than (3.1). Given

K ≥ 2, we define

JNCE(θ) = E
(x,y1)∼pop

y2:K∼qK−1

[− log πθ(1|x, y1:K)] (3.4)

23

where y2:K ∈ YK−1 are negative examples drawn iid from some “noise” distribution q over Y .

Popular choices of q include the uniform distribution q(y) = 1/ |Y| and the population marginal

q(y) = pop(y).

The NCE loss (3.4) has been studied extensively. An optimal classifier can be extracted from

a minimizer of JNCE [30]; minimizing JNCE can be seen as maximizing a lower bound on the mutual

information between (x, y) ∼ pop if q is the population marginal [68]. We refer to Stratos [69]

for an overview. However, most of these results focus on unconditional negative examples and do

not address hard negatives, which are clearly conditional. We now focus on conditional negative

distributions, which are more suitable for describing hard negatives.

3.2.2 Related Work

We discuss related work to better contextualize our contributions. There is a body of work on de-

veloping unbiased estimators of the population distribution by modifying NCE. The modifications

include learning the normalization term as a model parameter [28, 29] and using a bias-corrected

score function [30]. However, they assume unconditional negative distributions and do not explain

the benefit of hard negatives in NCE [15, 67, 31, 62]. In contrast, we directly consider the hard-

negative NCE loss used in practice (3.6), and justify it as a biased estimator of the gradient of the

cross-entropy loss.

Our work is closely related to prior works on estimating the gradient of the cross-entropy loss,

again by modifying NCE. They assume the following loss [64], which we will denote by JPRIOR(θ):

E
(x,y1)∼pop

y2:K∼ν(·|x,y1)K

[
− log

exp (s̄θ(x, y1, y1))∑K
k=1 exp (s̄θ(x, y1, yk))

]
(3.5)

Here, ν(·|x, y1) is a conditional distribution over Y\ {y1}, and s̄θ(x, y′, y) is equal to sθ(x, y) if

y = y′ and sθ(x, y)− log((K−1)ν(y|x, y1)) otherwise. It can be shown that∇JPRIOR(θ) = ∇JCE(θ)

iff ν(y|x, y1) ∝ exp(sθ(x, y)) for all y ∈ Y\ {y1} [70]. However, (3.5) requires adjusting the score

function and iid negative examples, thus less aligned with practice than (3.6). The bias analysis of

24

∇JPRIOR(θ) for general ν(·|x, y1) is also significantly more complicated than Theorem 3.3.1 [71].

There is a great deal of recent work on unsupervised contrastive learning of image embeddings

in computer vision [68, 72, 73, inter alia]. Here, sθ(x, y) = Eθ(x)
⊤Fθ(y) is a similarity score

between images, and Eθ or Fθ is used to produce useful image representations for downstream

tasks. The model is again learned by (3.4) where (x, y1) are two random corruptions of the same

image and y2:K are different images. Robinson et al. [74] propose a hard negative distribution in

this setting and analyze the behavior of learned embeddings under that distribution. In contrast, our

setting is large-scale supervised classification, such as entity linking, and our analysis is concerned

with NCE with general hard negative distributions.

In a recent work, Xiong et al. [32] consider contrastive learning for text retrieval with hard

negatives obtained globally from the whole data with asynchronous updates, as we do in our ex-

periments. They use the framework of importance sampling to argue that hard negatives yield

gradients with larger norm, thus smaller variance and faster convergence. However, their argument

does not imply our theorems. They also assume a pairwise loss, excluding non-pairwise losses

such as (3.4).

3.3 Hard Negatives in NCE

Given K ≥ 2, we define

JHARD(θ) = E
(x,y1)∼pop

y2:K∼h(·|x,y1)

[− log πθ(1|x, y1:K)] (3.6)

where y2:K ∈ YK−1 are negative examples drawn from a conditional distribution h(·|x, y1) given

(x, y1) ∼ pop. Note that we do not assume y2:K are iid. While simple, this objective captures the

essence of using hard negatives in NCE, since the negative examples can arbitrarily condition on

the input and the gold (e.g., to be wrong but difficult to distinguish from the gold) and be correlated

(e.g., to avoid duplicates).

We give two interpretations of optimizing JHARD. First, we show that the gradient of JHARD is a

25

biased estimator of the gradient of the cross-entropy loss JCE. Thus optimizing JHARD approximates

optimizing JCE when we use a gradient-based method, where the error depends on the choice of

h(·|x, y1). Second, we show that the hard negative mining strategy can be recovered by considering

an adversarial setting in which h(·|x, y1) is learned to maximize the loss.

3.3.1 Gradient Estimation

We assume an arbitrary choice of h(·|x, y1) and K ≥ 2. Denote the bias at θ ∈ Rd by

b(θ) = ∇JCE(θ)−∇JHARD(θ)

To analyze the bias, the following quantity will be important. For x ∈ X define

γθ(y|x) = Pr
y1∼pop(·|x)

y2:K∼h(·|x,y1)
k∼πθ(·|x,y1:K)

(yk = y) (3.7)

for all y ∈ Y . That is, γθ(y|x) is the probability that y is included as a candidate (either as the gold

or a negative) and then selected by the NCE discriminator (3.3).

Theorem 3.3.1. For all i = 1 . . . d,

bi(θ) = E
x∼pop

[∑
y∈Y

ϵθ(y|x)
∂sθ(x, y)

∂θi

]

where ϵθ(y|x) = pθ(y|x)− γθ(y|x).

Proof. Fix any x ∈ X and let Jx
CE(θ) and Jx

HARD(θ) denote JCE(θ) and JHARD(θ) conditioned on x.

The difference Jx
CE(θ)− Jx

HARD(θ) is

logZθ(x)− E
y1∼pop(·|x)

y2:K∼h(·|x,y1)

[logZθ(x, y1:K)] (3.8)

where we define Zθ(x) =
∑

y′∈Y exp (sθ(x, y
′)) and Zθ(x, y1:K) =

∑K
k=1 exp(sθ(x, yk)). For

26

any (x̃, ỹ), the partial derivative of (3.8) with respect to sθ(x̃, ỹ) is given by [[x = x̃]] pθ(ỹ|x) −

[[x = x̃]] γθ(ỹ|x) where [[A]] is the indicator function that takes the value 1 if A is true and 0

otherwise. Taking an expectation of their difference over x ∼ pop gives the partial derivative

of b(θ) = JCE(θ) − JHARD(θ) with respect to sθ(x̃, ỹ): pop(x̃)(pθ(ỹ|x̃) − γθ(ỹ|x̃)). The statement

follows from the chain rule:

bi(θ) =
∑

x∈X ,y∈Y

∂b(θ)

∂sθ(x, y)

∂sθ(x, y)

∂θi

Theorem 3.3.1 states that the bias vanishes if γθ(y|x) matches pθ(y|x). Hard negative mining

can be seen as an attempt to minimize the bias by defining h(·|x, y1) in terms of pθ. Specifically,

we define

h(y2:K |x, y1)

∝ [[|{y1 . . . yK}| = K]]
K∏
k=2

pθ(yk|x) (3.9)

Thus h(·|x, y1) has support only on y2:K ∈ YK−1 that are distinct and do not contain the gold.

Greedy sampling from h(·|x, y1) corresponds to taking K − 1 incorrect label types with highest

scores. This coincides with the hard negative mining strategy of Gillick et al. [15].

The absence of duplicates in y1:K ensures JCE(θ) = JHARD(θ) ifK = |Y|. This is consistent with

(but does not imply) Theorem 3.3.1 since in this case γθ(y|x) = pθ(y|x). For general K < |Y|,

Theorem 3.3.1 still gives a precise bias term. To gain a better insight into its behavior, it is helpful

27

to consider a heuristic approximation given by1

γθ(y|x) ≈
pθ(y|x) exp (sθ(x, y))

Nθ(x)

where Nθ(x) =
∑

y′∈Y pθ(y
′|x) exp (sθ(x, y′)). Plugging this approximation in Theorem 3.3.1 we

have a simpler equation

bi(θ) ≈ E
(x,y)∼pop

[
(1− δθ(x, y))

∂sθ(x, y)

∂θi

]

where δθ(x, y) = exp (sθ(x, y)) /Nθ(x). The expression suggests that the bias becomes smaller as

the model improves since pθ(·|x) ≈ pop(·|x) implies δθ(x, y) ≈ 1 where (x, y) ∼ pop.

We can formalize the heuristic argument to prove a desirable property of (3.6): the gradient is

unbiased if θ satisfies pθ(y|x) = pop(y|x), assuming iid hard negatives.

Theorem 3.3.2. Assume K ≥ 2 and the distribution h(y2:K |x, y1) =
∏K

k=2 pθ(yk|x) in (3.6). If

pθ(y|x) = pop(y|x), then∇JHARD(θ) = ∇JCE(θ).

Proof. Since pop(y|x) = exp(sθ(x, y))/Zθ(x), the probability γθ(y|x) in (3.7) is

∑
y1:K∈YK

K∏
k=1

exp (sθ(x, yk))

Zθ(x)

exp (sθ(x, y))

Zθ(x, y1:K)

=
exp (sθ(x, y))

Zθ(x)

∑
y1:K∈YK

∏K
k=1 exp (sθ(x, yk))

Zθ(x, y1:K)

The sum marginalizes a product distribution over y1:K , thus equals one. Hence γθ(y|x) = pθ(y|x).

The statement follows from Theorem 3.3.1.
1We can rewrite γθ(y|x) as

E
y1∼pop(·|x)

y2:K∼h(·|x,y1)

[
county1:K

(y) exp (sθ(x, y))∑
y′∈Y county1:K

(y′) exp (sθ(x, y′))

]

where county1:K
(y) is the number of times y appears in y1:K . The approximation uses county1:K

(y) ≈ pθ(y|x) under
(3.9).

28

The proof exploits the fact that negative examples are drawn from the model and does not gener-

ally hold for other negative distributions (e.g., uniformly random). We empirically verify that hard

negatives indeed yield a drastically smaller bias compared to random negatives (Section 3.5.4).

3.3.2 Adversarial Learning

We complement the bias-based view of hard negatives with an adversarial view. We generalize

(3.6) and define

JADV(θ, h) = E
(x,y1)∼pop

y2:K∼h(·|x,y1)

[− log πθ(1|x, y1:K)]

where we additionally consider the choice of a hard-negative distribution. The premise of adver-

sarial learning is that it is beneficial for θ to consider the worst-case scenario when minimizing this

loss. This motivates a nested optimization problem:

min
θ∈Rd

max
h∈H

JADV(θ, h)

whereH denotes the class of conditional distributions over S ⊂ Y satisfying |S ∪ {y1}| = K.

Theorem 3.3.3. Fix θ ∈ Rd. For any (x, y1), pick

ỹ2:K ∈ argmax
y2:K∈YK−1:
|{y1...yK}|=K

K∑
k=2

sθ(x, yk)

breaking ties arbitrarily, and define the point-mass distribution over YK−1:

h̃(y2:K |x, y1) = [[yk = ỹk ∀k = 2 . . . K]]

Then h̃ ∈ argmaxh∈H JADV(θ, h).

29

Proof. maxh∈H JADV(θ, h) is equivalent to

max
h∈H

E
(x,y1)∼pop

y2:K∼h(·|x,y1)

[
log

K∑
k=1

exp (sθ(x, yk))

]

The expression inside the expectation is maximized by ỹ2:K by the monotonicity of log and exp,

subject to the constraint that |{y1 . . . yK}| = K. h̃ ∈ H achieves this maximum.

3.4 Score Function

Along with the choice of negatives, the choice of the score function sθ : X × Y → R is a critical

component of NCE in practice. There is a clear trade-off between performance and efficiency in

modeling the cross interaction between the input-label pair (x, y). This trade-off spurred many

recent works to propose various architectures in search of a sweet spot [21, 65], but they are

developed in isolation of one another and difficult to compare. In this section, we give a general

algebraic form of the score function that subsumes many of the existing works as special cases.

3.4.1 General Form

We focus on the standard setting in NLP in which x ∈ VT and y ∈ VT ′ are sequences of tokens in

a vocabulary V . Let E(x) ∈ RH×T and F (y) ∈ RH×T ′ denote their encodings, typically obtained

from the final layers of separate pretrained transformers like BERT [75]. We follow the convention

popularized by BERT and assume the first token is a special symbol (i.e., [CLS]), so that E1(x) and

F1(y) represent single-vector summaries of x and y. We have the following design choices:

• Direction: If x→ y, define the query Q = E(x) and key K = F (y). If y → x, define the query

Q = F (y) and key K = E(x).

• Reduction: Given integers m,m′, reduce the number of columns in Q and K to obtain Qm ∈

RH×m and Km′ ∈ RH×m′ . We can simply select leftmost columns, or introduce an additional

layer to perform the reduction.

30

• Attention: Choose a column-wise attention Attn : A 7→ sA either Soft or Hard. If Soft,

sAt = softmax(At) where the subscript denotes the column index. If Hard, sAt is a vector of

zeros with exactly one 1 at index argmaxi[At]i.

Given the design choices, we define the score of (x, y) as

sθ(x, y) = 1⊤mQ
⊤
mKm′Attn

(
K⊤

m′Qm

)
(3.10)

where 1m is a vector of m 1s that aggregates query scores. Note that the query embeddings Qm

double as the value embeddings. The parameter vector θ ∈ Rd denotes the parameters of the

encoders E,F and the optional reduction layer.

3.4.2 Examples

Dual encoder. Choose either direction x→ y or y → x. Select the leftmost m = m′ = 1 vectors

in Q and K as the query and key. The choice of attention has no effect. This recovers the standard

dual encoder used in many retrieval problems [76, 77, 66, 67, 31, 78]: sθ(x, y) = E1(x)
⊤F1(y).

Poly-encoder. Choose the direction y → x. Select the leftmost m = 1 vector in F (y) as the

query. Choose an integer m′ and compute Km′ = E(x)Soft(E(x)⊤O) where O ∈ RH×m′ is a

learnable parameter (“code” embeddings). Choose soft attention. This recovers the poly-encoder

[21]: sθ(x, y) = F1(y)
⊤Cm′(x, y) where Cm′(x, y) = Km′Soft

(
K⊤

m′F1(y)
)
. Similar architectures

without length reduction have been used in previous works, for instance the neural attention model

of Ganea and Hofmann [79].

Sum-of-max. Choose the direction x → y. Select all m = T and m′ = T ′ vectors in E(x) and

F (y) as the query and key. Choose Attn = Hard. This recovers the sum-of-max encoder (aka.,

ColBERT) [20]: sθ(x, y) =
∑T

t=1maxT
′

t′=1Et(x)
⊤Ft′(y).

31

Multi-vector. Choose the direction x → y. Select the leftmost m = 1 and m′ = 8 vectors

in E(x) and F (y) as the query and key. Choose Attn = Hard. This recovers the multi-vector

encoder [65]: sθ(x, y) = maxm
′

t′=1E1(x)
⊤Ft′(y). It reduces computation to fast dot products over

cached embeddings, but is less expressive than the sum-of-max.

The abstraction (3.10) is useful because it generates a spectrum of architectures as well as

unifying existing ones. For instance, it is natural to ask if we can further improve the poly-encoder

by using m > 1 query vectors. We explore these questions in experiments.

3.5 Experiments

We now study empirical aspects of the hard-negative NCE (Section 3.3) and the spectrum of score

functions (Section 3.4). Our main testbed is Zeshel [66], a challenging dataset for zero-shot entity

linking. We also present complementary experiments on AIDA CoNLL-YAGO [47].2

3.5.1 Task

Zeshel contains 16 domains (fictional worlds like Star Wars) partitioned to 8 training and 4 val-

idation and test domains. Each domain has tens of thousands of entities along with their textual

descriptions, which contain references to other entities in the domain and double as labeled men-

tions. The input x is a contextual mention and the label y is the description of the referenced

entity. A score function sθ(x, y) is learned in the training domains and applied to a new domain

for classification and retrieval. Thus the model must read descriptions of unseen entities and still

make correct predictions.

We follow prior works and report micro-averaged top-64 recall and macro-averaged accuracy

for evaluation. The original Zeshel paper [66] distinguishes normalized vs unnormalized accuracy.

Normalized accuracy assumes the presence of an external retriever and considers a mention only

if its gold entity is included in top-64 candidates from the retriever. In this case, the problem is

2Our code is available at: https://github.com/WenzhengZhang/hard-nce-el.

https://github.com/WenzhengZhang/hard-nce-el

32

reduced to reranking and a computationally expensive joint encoder can be used. Unnormalized

accuracy considers all mentions. Our goal is to improve unnormalized accuracy.

Logeswaran et al. [66] use BM25 for retrieval, which upper bounds unnormalized accuracy by

its poor recall (first row of Table 3.1). Wu et al. [67] propose a two-stage approach in which a

dual encoder is trained by hard-negative NCE and held fixed, then a BERT-based joint encoder is

trained to rerank the candidates retrieved by the dual encoder. This approach gives considerable

improvement in unnormalized accuracy, primarily due to the better recall of a trained dual encoder

over BM25 (second row of Table 3.1). We show that we can further push the recall by optimizing

the choice of hard negatives and architectures.

3.5.2 Architectures

We represent x and y as length-128 wordpiece sequences where the leftmost token is the special

symbol [CLS]; we mark the boundaries of a mention span in x with special symbols. We use two

independent BERT-bases to calculate mention embeddingsE(x) ∈ R768×128 and entity embeddings

F (y) ∈ R768×128, where the columns Et(x), Ft(y) are contextual embeddings of the t-th tokens.

Retriever. The retriever defines sθ(x, y), the score between a mention x and an entity y, by one

of the architectures described in Section 3.4.2:

E1(x)
⊤F1(y) (DUAL)

F1(y)
⊤Cm(x, y) (POLY-m)

maxmt=1E1(x)
⊤Ft(y) (MULTI-m)∑128

t=1 max128t′=1Et(x)
⊤Ft′(y) (SOM)

denoting the dual encoder, the poly-encoder [21], the multi-vector encoder [65], and the sum-of-

max encoder [20]. These architectures are sufficiently efficient to calculate sθ(x, y) for all entities

y in training domains for each mention x. This efficiency is necessary for sampling hard negatives

33

during training and retrieving candidates at test time.

Reranker. The reranker defines sθ(x, y) = w⊤E1(x, y) + b where E(x, y) ∈ RH×256 is BERT

(either base H = 768 or large H = 1024) embeddings of the concatenation of x and y separated

by the special symbol [SEP], and w, b are parameters of a linear layer. We denote this encoder by

JOINT.

3.5.3 Optimization

Training a retriever. A retriever is trained by minimizing an empirical estimate of the hard-

negative NCE loss (3.6),

ĴHARD(θ) = −
1

N

N∑
i=1

log
exp (sθ(xi, yi,1))∑K

k′=1 exp (sθ(xi, yi,k′))
(3.11)

where (x1, y1,1) . . . (xN , yN,1) denote N mention-entity pairs in training data, and yi,2 . . . yi,K ∼

h(·|xi, yi,1) are K − 1 negative entities for the i-th mention. We vary the choice of negatives as

follows.

• Random: The negatives are sampled uniformly at random from all entities in training data.

• Hard: The negatives are sampled from (3.9) each epoch. That is, in the beginning of each

training pass, for each i we sample entities yi,2 . . . yi,K from Y\ {yi,1} without replacement with

probabilities proportional to exp (sθ(xi, yi,k)). This is slightly different from, and simpler than,

the original hard negative mining strategy of Gillick et al. [15] which pretrains the model using

random negatives then greedily adds negative entities that score higher than the gold.

• Mixed-p: p percent of the negatives are hard, the rest are random. Previous works have shown

that such a combination of random and hard negatives can be effective. We find the performance

is not sensitive to the value of p.

We experimented with in-batch sampling as done in previous works (e.g., Gillick et al. [15]), but

found sampling from all training data to be as effective and more straightforward (e.g., the number

34

5 10 15 20 25 30
0

1

2

3

4

5
Hard NCE

Random NCE

Cross Entropy

Entropy

5 10 15 20 25 30
0

2

4

6

8

10

12 Hard NCE

Random NCE

Figure 3.1: Synthetic experiments. We use a feedforward network to estimate the population
distribution by minimizing sampled cross entropy in each step (x-axis). We show the NCE loss
(left) and the norm of the gradient bias (right) using hard vs random negatives.

of random negatives is explicitly unrelated to the batch size). We use K = 64 in all experiments.

Training a reranker. We use JOINT only for reranking by minimizing (3.11) with top-63 neg-

atives given by a fixed retriever, where we vary the choice of retriever. We also investigate other

architectures for reranking such as the poly-encoder and the sum-of-max encoder, but we find the

full cross attention of JOINT to be indispensable.

Other details. All models are trained up to 4 epochs using Adam. We tune the learning rate

over {5e−5, 2e−5, 1e−5} on validation data. We use the training batch size of 4 mentions for

all models except for JOINT, for which we use 2. Training time is roughly half a day on a single

NVIDIA A100 GPU for all models, except the SOM retriever which takes 1-2 days.

35

Model Negatives Val Test
BM25 – 76.22 69.13
Wu et al. [67] Mixed (10 hard) 91.44 82.06
DUAL Random 91.08 81.80

Hard 91.99 84.87
Mixed-50 91.75 84.16

DUAL-(3.5) Hard 91.57 83.08
POLY-16 Random 91.05 81.73

Hard 92.08 84.07
Mixed-50 92.18 84.34

MULTI-8 Random 91.13 82.44
Hard 92.35 84.94

Mixed-50 92.76 84.11
SOM Random 92.51 87.62

Hard 94.49 88.68
Mixed-50 94.66 89.62

Table 3.1: Top-64 recalls over different choices of architecture and negative examples for a re-
triever trained by NCE. Wu et al. [67] train a dual encoder by NCE with 10 hard negatives. DUAL-
(3.5) is DUAL trained with the score-adjusted loss (3.5).

3.5.4 Bias

We conduct experiments on synthetic data to empirically validate our bias analysis in Section 3.3.1.

We construct a population distribution over 1000 labels with small entropy to represent the

peaky conditional label distribution pop(y|x). We use a feedforward network with one ReLU

layer to estimate this distribution by minimizing the empirical cross-entropy loss based on 128 iid

samples per update. At each update, we compute cross-entropy (3.2) exactly, and estimate NCE

(3.6) with 4 negative samples by Monte Carlo (10 simulations).

Figure 3.1 plots the value of the loss function (left) and the norm of the gradient bias (right)

across updates. We first observe that hard NCE yields an accurate estimate of cross entropy even

with 4 samples. In contrast, random NCE quickly converges to zero, reflecting the fact that the

model can trivially discriminate between the gold and random labels. We next observe that the

bias of the gradient of hard NCE vanishes as the model distribution converges to the population

distribution, which supports our analysis that the bias becomes smaller as the model improves. The

bias remains nonzero for random NCE.

36

Model Retriever Negatives Joint Reranker Unnormalized
Val Test

Logeswaran et al. [66] BM25 – base – 55.08
Logeswaran et al. [66]+DAP BM25 – base – 55.88
Wu et al. [67] DUAL (base) Mixed (10 hard) base – 61.34
Wu et al. [67] DUAL (base) Mixed (10 hard) large – 63.03
Ours DUAL (base) Hard base 69.14 65.42

DUAL (base) Hard large 68.31 65.32
SOM (base) Hard base 69.19 66.67
SOM (base) Hard large 70.08 65.95
SOM (base) Mixed-50 base 69.22 65.37
SOM (base) Mixed-50 large 70.28 67.14

Table 3.2: Unnormalized accuracies with two-stage training. DAP refers to domain adaptive pre-
training on source and target domains.

Mention . . . his temporary usurpation of the Imperial throne by invading and seized control of the Battlespire, the purpose of this being to cripple
the capacity of the Imperial College of Battlemages, which presented a threat to Tharn’s power as Emperor. Mehrunes Dagon was
responsible for the destruction of Mournhold at the end of the First Era, and apparently also . . .

Random 1. Mehrunes Dagon is one of the seventeen Daedric Princes of Oblivion and the primary antagonist of . . .
2. Daedric Forces of Destruction were Mehrunes Dagon’s personal army, hailing from his realm of Oblivion, the Deadlands. . . .
3. Weir Gate is a device used to travel to Battlespire from Tamriel. During the Invasion of the Battlespire, Mehrunes Dagon’s forces . . .
4. Jagar Tharn was an Imperial Battlemage and personal adviser to Emperor Uriel Septim VII. Tharn used the Staff of Chaos . . .
5. House Sotha was one of the minor Houses of Vvardenfell until its destruction by Mehrunes Dagon in the times of Indoril Nerevar. . . .
6. Imperial Battlespire was an academy for training of the Battlemages of the Imperial Legion. The Battlespire was moored in . . .

Hard 1. Fall of Ald’ruhn was a battle during the Oblivion Crisis. It is one of the winning battles invading in the name of Mehrunes Dagon . . .
2. Daedric Forces of Destruction were Mehrunes Dagon’s personal army, hailing from his realm of Oblivion, the Deadlands. . . .
3. House Sotha was one of the minor Houses of Vvardenfell until its destruction by Mehrunes Dagon in the times of Indoril Nerevar. . . .
✓4. Sack of Mournhold was an event that occurred during the First Era. It was caused by the Dunmer witch Turala Skeffington . . .
5. Mehrunes Dagon of the House of Troubles is a Tribunal Temple quest, available to the Nerevarine in . . .
6. Oblivion Crisis, also known as the Great Anguish to the Altmer or the Time of Gates by Mankar Camoran, was a period of major turmoil . . .

Table 3.3: A retrieval example with hard negative training on Zeshel. We use a SOM retriever
trained with random vs hard negatives (92.51 vs 94.66 in top-64 validation recall). We show a
validation mention (destruction) whose gold entity is retrieved by the hard-negative model but not
by the random-negative model. Top entities are shown for each model (title boldfaced); the correct
entity is Sack of Mournhold (checkmarked).

3.5.5 Retrieval

Table 3.1 shows the top-64 recall (i.e., the percentage of mentions whose gold entity is included

in the 64 entities with highest scores under a retriever trained by (3.6)) as we vary architectures

and negative examples. We observe that hard and mixed negative examples always yield sizable

improvements over random negatives, for all architectures. Our dual encoder substantially outper-

forms the previous dual encoder recall by Wu et al. [67], likely due to better optimization such as

global vs in-batch random negatives and the proportion of hard negatives. We also train a dual en-

coder with the bias-corrected loss (3.5) and find that this does not improve recall. The poly-encoder

37

and the multi-vector models are comparable to but do not improve over the dual encoder. However,

the sum-of-max encoder delivers a decisive improvement, especially with hard negatives, pushing

the test recall to above 89%. Based on this finding, we use DUAL and SOM for retrieval in later

experiments.

3.5.6 Results

We show our main results in Table 3.2. Following Wu et al. [67], we do two-stage training in which

we train a DUAL or SOM retriever with hard-negative NCE and train a JOINT reranker to rerank its

top-64 candidates. All our models outperform the previous best accuracy of 63.03% by Wu et al.

[67]. In fact, our dual encoder retriever using a BERT-base reranker outperforms the dual encoder

retriever using a BERT-large reranker (65.42% vs 63.03%). We obtain a clear improvement by

switching the retriever from dual encoder to sum-of-max due to its high recall (Table 3.1). Using a

sum-of-max retriever trained with mixed negatives and a BERT-large reranker gives the best result

67.14%.

3.5.7 Qualitative Analysis

To better understand practical implications of hard negative mining, we compare a SOM retriever

trained on Zeshel with random vs hard negatives (92.51 vs 94.66 in top-64 validation recall). The

mention categories most frequently improved are Low Overlap (174 mentions) and Multiple Cate-

gories (76 mentions) (see Logeswaran et al. [66] for the definition of these categories), indicating

that hard negative mining makes the model less reliant on string matching. A typical example

of improvement is shown in Table 3.3. The random-negative model retrieves person, device, or

institution entities because they have more string overlap (e.g. “Mehrunes Dagon”, “Battlespire”,

and “Tharn”). In contrast, the hard-negative model appears to better understand that the mention is

referring to a chaotic event like the Fall of Ald’ruhn, Sack of Mournhold, and Oblivion Crisis and

rely less on string matching. We hypothesize that this happens because string matching is sufficient

to make a correct prediction during training if negative examples are random, but insufficient when

38

Model Accuracy
BLINK without finetuning 80.27
BLINK with finetuning 81.54
DUAL with p = 0 82.40
DUAL with p = 50 88.01
MULTI-2 with p = 50 88.39
MULTI-3 with p = 50 87.94

Table 3.4: Test accuracies on AIDA CoNLL-YAGO. BLINK refers to the two-stage model of Wu
et al. [67] pretrained on Wikipedia. All our models are initialized from the BLINK dual encoder
and finetuned using all 5.9 million Wikipedia entities as candidates.

they are hard.

To examine the effect of encoder architecture, we also compare a DUAL vs SOM retriever both

trained with mixed negatives (91.75 vs 94.66 in top-64 validation recall). The mention categories

most frequently improved are again Low Overlap (335 mentions) and Multiple Categories (41

mentions). This indicates that cross attention likewise helps the model less dependent on simple

string matching, presumably by allowing for a more expressive class of score functions.

3.5.8 Results on AIDA

We complement our results on Zeshel with additional experiments on AIDA. We use BLINK, a

Wikipedia-pretrained two-stage model (a dual encoder retriever pipelined with a joint reranker,

both based on BERT) made available by Wu et al. [67].3 We extract the dual encoder module from

BLINK and finetune it on AIDA using the training portion. During finetuning, we use all 5.9 million

Wikipedia entities as candidates to be consistent with prior work. Because of the large scale of the

knowledge base we do not consider SOM and focus on the MULTI-m retriever (DUAL is a special

case with m = 1). At test time, all models consider all Wikipedia entities as candidates. For both

AIDA and the Wikipedia dump, we use the version prepared by the KILT benchmark [6].

Table 3.4 shows the results. Since Wu et al. [67] do not report AIDA results, we take the

performance of BLINK without and with finetuning from their GitHub repository and the KILT

3https://github.com/facebookresearch/BLINK

https://github.com/facebookresearch/BLINK

39

leaderboard.4 We obtain substantially higher accuracy by mixed-negative training even without

reranking.5 There is no significant improvement from using m > 1 in the multi-vector encoder on

this task.

3.6 Conclusions

Hard negatives can often improve NCE in practice, substantially so for entity linking [15], but

are used without justification. We have formalized the role of hard negatives in quantifying the

bias of the gradient of the contrastive loss with respect to the gradient of the full cross-entropy

loss. By jointly optimizing the choice of hard negatives and architectures, we have obtained new

state-of-the-art results on the challenging Zeshel dataset [66].

4https://ai.facebook.com/tools/kilt/ (as of April 8, 2021)
5We find that reranking does not improve accuracy on this task, likely because the task does not require as much

reading comprehension as Zeshel.

https://ai.facebook.com/tools/kilt/

40

CHAPTER 4

PROMOTING TASK SPECIALIZATION FOR MULTI-TASK RETRIEVAL

This chapter is adapted from joint work with Chenyan Xiong, Karl Stratos and Arnold Overwijk

entitled “ Improving Multitask Retrieval by Promoting Task Specialization” [80].

In multitask retrieval, a single retriever is trained to retrieve relevant contexts for multiple tasks.

Despite its practical appeal, naive multitask retrieval lags behind task-specific retrieval in which a

separate retriever is trained for each task. We show that it is possible to train a multitask retriever

that outperforms task-specific retrievers by promoting task specialization. The main ingredients

are: (1) a better choice of pretrained model—one that is explicitly optimized for multitasking—

along with compatible prompting, and (2) a novel adaptive learning method that encourages each

parameter to specialize in a particular task. The resulting multitask retriever is highly performant

on the KILT benchmark. Upon analysis, we find that the model indeed learns parameters that are

more task-specialized compared to naive multitasking without prompting or adaptive learning.

4.1 Introduction

A standard approach to knowledge-intensive language tasks such as question answering (QA),

entity disambigution, and fact verification is retrieval-based. Given an query, a retriever is used to

efficiently search a large knowledge base (KB) to retrieve relevant “contexts”, typically in the form

of short paragraphs. How these contexts are used is task-specific (e.g., entity disambiguation takes

the title of the article in which the top retrieved context is found; QA predicts an answer from the

contexts by through a reader model). In this paper, we focus on the retrieval step.

In particular, we focus on multitask retrieval. In this setting, there are K > 1 downstream tasks

that benefit from retrieval from a shared KB. A single retriever is then tasked with performing

retrieval for K tasks. Multitask retrieval contrasts with task-specific retrieval in which a separate

retriever is trained for each task, and has compelling advantages such as model simplicity (i.e., we

41

can use the same model for all tasks rather than having to design potentially different models for

different tasks) and memory efficiency at test time (K times smaller).

Despite the practical appeal, the performance of multitask retrieval has been underwhelming,

severely limiting its real-world applicability. Specifically, previous work by Maillard et al. [81]

trains DPR [14] on the union of all training datasets in the KILT benchmark [6], but the model

is outperformed by task-specific retrievers in 5 out of 8 tasks (page-level R-precision, validation

split). In our experiments, we find that it is in fact outperformed in all tasks (often by substantial

margins) when a stronger task-specific baseline is used. This result is surprising as well as disap-

pointing given the usual benefits of multitask learning (e.g., data efficiency, reduced overfitting)

when properly done.

We debunk the previous negative result by presenting a multitask retriever that outperforms

task-specific retrievers. The main theme of our work is that it is beneficial to explicitly promote task

specialization. A first important source of improvement is a better choice of pretrained model, one

that is explicitly optimized for multitasking. Specifically, instead of the standard retrieval encoder

BERT [1], we use T5 [2] which includes multitasking in its pretraining stage. Importantly, we use

the same prompting as in pretraining (i.e., task indicator) to reduce the gap between pretraining

and finetuning for multitask retrieval. A second source of improvement is a novel adaptive learning

method in which we adatively upweight the task gradients by the parameter’s sensitivity to these

tasks to encourage task specialization.

The resulting multitask retriever is highly performant on the KILT benchmark. We achieve

73.74% average page-level R-precision on KILT validation data and 72.84% average page-level

R-precision on KILT test data. Upon analysis, we find that the model indeed learns parameters that

are more task-specialized compared to naive multitasking without prompting or adaptive learning.

4.2 Related Work

Maillard et al. [81] propose multitask retrieval largely as an extension of DPR. Their best model is

a BERT-based dual encoder trained on the union of 8 retrieval tasks. While it performs comparably

42

with task-specific DPRs on some tasks, it generally lags behind. In this chapter, we use stronger

task-specific retrievers based on T5 and ANCE [82] all of which substantially outperform their

multitask retriever. We argue that this negative result undermines the case for multitask retrieval

and that it is crucial to demonstrate competitive performance. Our main contribution is producing

this demonstration.

We emphasize that achieving competitive multitask retrieval in practice is a highly difficult

empirical problem. One might think that it is simply an application of multitask learning, which

has no shortage of sophisticated techniques. These techniques typically modify the gradients dur-

ing training, such as gradient surgery [83], gradient vaccine [84], common gradient descent [85],

and GradNorm [86]. We experiment with these techniques and find that they do not help, thus

motivated to develop one that works.

Our technical contribution is a new method for multitask learning based on the notion of task

sensitivity. Given a loss function J(θ), the sensitivity of the i-th parameter to the loss at θ is defined

as the absolute change in the loss when θi is set to zero, which can be approximated by a first-order

Taylor approximation as

|J(θ)− J(θ−i)| ≈
∣∣∣∣∂J(θ)∂θi

× θi
∣∣∣∣

where θ−i is equal to θ except that its i-th element is zero. This quantity has been used in the

context of model pruning—as a way of identifying weakly sensitive weights [87, 88, 89, 90] and

updating them more aggresively [91]. In contrast, we use the quantity to identify weights that

are strongly sensitive to a particular task and increase their sensitivity even further, intuitively to

achieve per-parameter task specialization. To our knowledge, we are the first to use parameter

sensitivity for multitasking learning.

We briefly differentiate our work from other recent works on multitask retrieval. Chen et al.

[92] present CorpusBrain, an autoregressive multitask retriever trained in largely the same style

as GENRE [22] with excellent performance. Autoregressive retrieval has different pros and cons

43

compared to dense retrieval which is our setting; it can be more memory and runtime efficient, but

it does not “read” the description of the target and thus not suited for retrieval tasks that require

involved reasoning over query-target pairs (e.g., zero-shot entity retrieval [66]). Thus we consider

the contribution of CorpusBrain to be at least partially orthogonal to ours. Nevertheless, we show

that our model outperforms CorpusBrain in a similar training setting in experiments. Asai et al.

[93] propose instruction-based retrieval in which the retriever is given an intent as well as a query

to find the intended target. While this is a form of multitask retrieval, the problem formulation is

different and it is evaluated on its own dataset benchmark.

4.3 Method

We build on the well-established framework of dual encoder [94, 61, 15, 14, inter alia]. Let X

denote the set of all queries and Y the set of all targets (i.e., KB). First, we assume mappings

textX : X → V+ and textY : Y → V+ where V denotes the vocabulary to “verbalize” queries

and targets. Second, we assume encoders encθX , enc
θ
Y : V+ → Rd with parameters θ defining

the relevance score function sθ(x, y) =
〈
encθX(textX(x)), enc

θ
Y (textY (y))

〉
. Third, assuming iid

samples (x1, y1) . . . (xN , yN) ∼ pop, we learn the parameters by noise contrastive estimation

(NCE):

min
θ
− 1

N

N∑
i=1

log
exp(sθ(xi, yi))∑
y∈Yi

exp(sθ(xi, y))

where Yi ⊂ Y satisfying yi ∈ Yi is a set containing the gold and negative targets for the i-th

labeled example. We pre-encode every y ∈ Y to vy = encθY (textY (y)) at test time and efficiently

compute the highest scoring target ŷ(x) = argmaxy∈Y
〈
encθX(textX(x)), vy

〉
for any x ∈ X by

maximum inner product search.

In multitask retrieval, there are K retrieval tasks each with Nk training examples (x
(k)
1 , y

(k)
1)

. . . (x
(k)
Nk
, y

(k)
Nk

) ∼ popk drawn iid from the k-th population distribution popk. We use the KILT

benchmark which includes K = 8 tasks addressing QA, entity linking, fact checking, slot filling,

44

and dialogue.1 The per-task loss is

Jk(θ) = −
1

Nk

Nk∑
i=1

log
exp(sθ(x

(k)
i , y

(k)
i))∑

y∈Y(k)
i

exp(sθ(x
(k)
i , y))

defining the final loss

J(θ) =
K∑
k=1

Nk

N
× Jk(θ)

Previous work by Maillard et al. [81] use the following setting. The KB Y consists of 100-token

disjoint Wikipedia passages. The text mappings textX , textY apply the BERT tokenizer to unmod-

ified queries and passages. The encoders encθX , enc
θ
Y are initialized with independent pretrained

BERT-bases (uncased). The task-specific training datasets are downsampled to be of similar sizes.

As in DPR, they train the model using hard negatives based on BM25, followed by one round of

hard negative mining from the model (only on Natural Questions and TriviaQA in which verifying

if a candidate negative is indeed incorrect is expedient).

We now describe the main sources of improvement that we achieve over the baseline multitask

retriever: a better choice of the base model with appropriate prompting, and better optimization.

4.3.1 Base Model

We use a shared T5 to parameterize and initialize the query and passage encoder encθ = encθX =

encθY . Specifically, we follow the ST5-EncDec architecture [95] which encode any z ∈ V+ as

encθ(z) = T5.generate(z, length = 1).state

(i.e., we run the T5-encoder on z, run the T5-decoder for 1 step from the special start symbol, and

take the resulting hidden state prior to token prediction). In addition, we define the text mapping

1We write “task” and “dataset” synonymously instead of distinguishing datasets from task types as done in some
previous works. Thus KILT has 8 tasks and 5 task types.

45

for queries x ∈ X in task k as

textX(x) = T5Tokenizer(πk ⊕ [SEP]⊕ x)

where ⊕ is string concatenation, [SEP] is the special separation token, and πk is a text prefix that

indicates which task x is a query of. We use dataset names as prefixes (e.g., π1 =“NQ”). The text

mapping for passages y ∈ Y does not use prefixes, that is

textY (y) = T5Tokenizer(y)

This allows us to pre-encode passage embeddings at test time and retain the efficiency of the

single-task dual encoder framework.

While simple, this choice is the most crucial component in our apporach to improving multitask

retrieval. We take a model pretrained for multitasking and adopt the same prefix concatenation

scheme for task adaptation, treating multitask retrieval as a continuation of the T5 training.

Interestingly, using task markers is reported to be not helpful in Maillard et al. [81]. This is

likely because their base model, BERT, is not pretrained for multitasking. Another difference is

that they use task markers to indicate the 5 task types (e.g., “QA”), whereas we use fine-grained

markers to indicate the 8 tasks (e.g., “NQ”). While there are previous works that use T5 for dense

retrieval [95], we are the first to exploit the multitasking component of T5 pretraining for multitask

retrieval.

4.3.2 Adaptive Learning

For the k-th task, the linear approximation of Jk(θ) around a ∈ Rd is

Jk(θ) ≈ Jk(a) + ⟨∇Jk(a), θ − a⟩

46

Let θ(t) denote the parameter value at the t-th update in gradient-based training. For any i = 1 . . . d,

we define θ(t)−i to be equal to θ(t) except that its i-th element is zero. The approximation of Jk(θ)

around a = θ
(t)
−i at θ = θ(t) is

Jk(θ
(t)) ≈ Jk(θ

(t)
−i) +

〈
∇Jk(θ(t)−i), θ

(t) − θ(t)−i

〉
= Jk(θ

(t)
−i) +

∂Jk(θ
(t))

∂θi
× θ(t)i

Rearranging and taking the absolute value, we have

σ
(t)
i,k =

∣∣∣∣∂Jk(θ(t))∂θi
× θ(t)i

∣∣∣∣ ≈ ∣∣∣Jk(θ(t))− Jk(θ(t)−i)
∣∣∣ (4.1)

which is easily computable and can be viewed as measuring how sensitive the i-th parameter is with

respect to the k-th task in the t-th iteration of training. We propose to use this quantity, previously

used in the model pruning literature [87], to encourage task specialization during training. We

define a conditional distribution over K tasks by

q(k|θ(t), t, i) =
exp(σ̄

(t)
i,k/τt)∑K

k=1 exp(σ̄
(t)
i,k/τt)

(4.2)

where τt > 0 is a temperature and σ̄(t)
i,k is an appropriately normalized and amortized estimation of

σ
(t)
i,k in Eq. (4.1) (see Section 4.3.2.1). Assuming training examples are sampled to roughly balance

the size across tasks (i.e., Nk ≈ Nk′), we take the following gradient step for the i-th parameter in

the t-th iteration:

θ
(t+1)
i = θ

(t)
i − η

K∑
k=1

q(k|θ(t), t, i)× ∂Jk(θ
(t))

∂θi

Note that this is a per-parameter adaptive learning. Each parameter θi ∈ R maintains a distribution

over K tasks and is updated more aggresively for tasks that θi is sensitive to.

47

4.3.2.1 Sensitivity normalization

The d parameters θ(t) can be of very different magnitudes. To reduce the parameter-wise variance

in the sensitivity scores, for task k we divide the scores by the median of across all parameters with

respect to task k:

σ̃
(t)
i,k =

σ
(t)
i,k

medianj=1...d(σ
(t)
j,k)

We use the median instead of the mean to account for the long tail distribution of task-specific

sensitivity scores. We also use momentum to amortize the scores: assuming some β > 0

σ̄
(t)
i,k = (1− β)σ̄(t−1)

i,k + βσ̃
(t)
i,k

where σ̄(0)
i,k = 0. This is the final version of sensitivity that we use in Eq. (4.2). The algorithm in

matrix form is given in Algorithm 1 (Appendix B.1).

4.4 Experiments

4.4.1 Setup

Datasets. We follow [81] and use eight tasks from KILT [6] for training and evaluation. We

randomly downsample the training data of the two largest datasets (T-REx and zsRE) to the same

order of magnitude as the rest. All the datasets share the same knowledge base of 36 million

disjoint 100-token Wikipedia passages preprocessed by Maillard et al. [81]. The data statistics and

other data-related details can be found in Appendix B.2.

Evaluation. We use the page-level R-precision (the suggested main metric in KILT) to measure

the retrieval performance. Page-level R-precision is the fraction of the R gold pages captured by

the retriever in the top-R candidates. We map the retrieved passages to the their corresponding

pages and use official KILT evaluation scripts to evaluate the page-level R-precision. We also

48

report passage-level R-precision proposed by Maillard et al. [81] on dev sets in Appendix B.5. We

use TREC Eval2 to evaluate the passage-level R-precision.

Model details. We initialize our dual encoder with the official T5-base [2] checkpoint. The query

encoder and passage encoder share weights. Following the ANCE [82] training paradigm, we first

warmup our model for 20 epochs with BM25 hard negatives by naive multitask learning with

task prefix. Then we train the model for 8 ANCE episodes with the model-mined hard negatives

refreshed at the begining of each ANCE episode. We adopt naive multitask learning with task

prefix for the first 7 ANCE episodes and apply the adaptive learning introduced in Section 4.3.2

for the last ANCE episode to improve the performance further. We use Adam [96] with a linear

learning rate decay schedule with warmup proportion 0.1 over 3 epochs for each ANCE iteration.

We provide more details and hyperparameters in Appendix B.3.

4.4.2 Main Results

We refer to our model as TACO, which stands for TAsk speCialty Optimization. Table 4.1 and

Table 4.2 show our main results on the KILT validation data and test data respectively. Fewer

comparable baselines are available for KILT test data than for KILT validation data.

Let avg val denote average validation page-level R-Precision. TACO achieves the best perfor-

mance on 4 out of 8 tasks for both validation and test data. The performance is either the second

best or close to the second best except AIDA, an entity linking dataset favoring autoregressive re-

trieval models over dense retrieval models [22]. TACO outperforms the previous multitask dense

retrieval model MT-DPR [81] significantly (+7.34% avg val). TACO also achieves better perfor-

mance compared with current top performing multitask autoregressive retrieval models in com-

parable setting (finetuned purely on KILT). TACO outperforms BARTmt (+3.33% avg val) with

smaller model size (T5-base vs Bart-large). Compared with BARTmt, CorpusBrainmt employs

additional pretraining and yields significant improvement over BARTmt (+2.15% avg val). TACO

still outperforms CorpusBrainmt (+1.18% avg val) with smaller model size and no additional pre-
2https://trec.nist.gov/trec eval/

https://trec.nist.gov/trec_eval/

49

Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Model FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg

Baselines.
BM25∗ 50.13 3.47 58.60 66.43 25.83 43.95 29.44 27.50 38.17
BART†

mt 81.92 89.17 75.18 91.08 58.62 48.69 67.64 50.98 70.41
CorpusBrain†mt 82.06 90.84 77.62 98.26 59.10 50.07 68.78 53.75 72.56
MT-DPR∗ 74.72 83.78 69.18 77.23 61.51 44.21 61.95 39.70 64.04
Task-specific DPR∗ 73.60 81.77 69.08 97.74 63.24 46.63 65.12 40.32 67.19
Task-specific BART† 80.03 87.98 74.46 93.91 50.96 39.21 66.13 50.75 67.93
Task-specific CorpusBrain† 81.77 90.36 76.90 98.49 57.67 50.62 69.25 53.60 72.33
Task-specific (ours) 74.28 85.28 77.18 99.38 65.39 46.79 69.08 53.63 71.38

Non-Comparable Models (For Reference).
CorpusBrain†mt+BLINK 85.03 92.86 80.22 98.49 64.61 52.23 71.71 59.72 75.61
GENRE† 84.68 92.75 79.68 94.84 64.26 51.82 71.11 56.32 74.43
TABi [97] 85.8 - 82.0 95.2 62.4 52.7 71.5 51.8 -

TACO 86.17 84.64 78.12 97.91 61.86 50.61 69.62 60.97 73.74

Table 4.1: Page-level R-precision on KILT validation data. Bold indicates the best model and
underline indicates the second. † and ∗ mark results from Chen et al. [92] and Maillard et al. [81]
respectively. The non-comparable models are trained on additional data or use extra information.
We list them only for reference not for comparison. Taks-specific models use a separate retriever
for each task while all the other models use a single retriever across all the tasks.

training. We also list various top performing multitask retrieval models for reference but not for

comparison because they are not in comparable setting. Both GENRE and CorpusBrainmt+BLINK

are finetuned on a large amount of additional training data besides KILT training data. Specifically,

they also use BLINK training data [67] for finetuning, which contains 8.9M annotated wikipedia

sentences. TABi [97] uses extra type labels information and leverages knowledge graph that is

very effective for retrieval. TACO even rivals these non-comparable models on all the tasks except

AIDA.

TACO is the only model that outperforms strong task-specific models noticeably. Our task-

specific baseline is significantly stronger than the task-specific DPR, likely due to better training

paradigm (ANCE) and better model (T5 vs BERT). Task-specific CorpusBrain is even stronger,

especially for FEVER and AIDA. Only TACO and CorpusBrainmt outperform the strong task-

specific models. TACO achieves a 2.36% improvement over its task-specific counterpart and a

50

Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Model FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg

Baselines.
TF-IDF† 50.9 3.7 44.7 60.8 28.1 34.1 46.4 49.0 39.7
SEAL‡ 81.4 - 62.1 91.6 63.2 58.8 68.4 57.5 -
MT-DPR∗ 74.5 26.5 69.5 80.9 59.4 42.9 61.5 41.1 57.0
MT-DPR‡

WEB 74.8 - 75.6 89.7 59.8 45.4 58.9 41.5 -
Task-specific (ours) 73.22 79.52 77.00 99.15 60.87 46.50 69.12 55.03 70.05

Non-Comparable Models (For Reference).
CorpusBrain†mt+BLINK 84.07 89.98 79.98 98.27 60.32 51.80 70.19 64.79 74.93
GENRE† 83.64 89.85 79.42 95.81 60.25 51.27 69.16 62.88 74.04
TABi [97] 84.4 - 81.9 96.2 62.6 53.1 70.4 59.1 -

TACO 84.07 80.64 77.22 98.21 60.80 50.70 68.45 62.64 72.84

Table 4.2: Page-level R-precision on KILT test data. Bold indicates the best model and underline
indicates the second. †, ∗ and ‡ mark results from Chen et al. [92], Maillard et al. [81] and
Bevilacqua et al. [25] respectively. The non-comparable models are trained on additional data or
use extra information. We list them only for reference not for comparison.

Fact Check. Ent. L. Slot Filling Open Domain QA Dial.

Variants FEV AY2 T-REx zsRE NQ HoPo TQA WoW Avg

TACO 86.17 84.64 78.12 97.91 61.86 50.61 69.62 60.97 73.74
w/o task prefix 85.71 84.68 74.82 94.68 61.05 49.38 67.79 58.81 72.12
w/o adaptive 84.81 85.49 75.00 92.24 62.81 51.47 68.95 60.54 72.66
w/o task prefix w/o adaptive 84.03 85.62 70.96 86.04 62.46 49.78 66.04 59.95 70.61
task query encoder 82.71 87.56 72.72 85.15 64.01 49.74 69.12 55.93 70.87
task type marker 84.49 85.51 73.88 89.37 62.85 50.97 67.70 60.02 71.85
PCG [83] 84.97 85.26 74.90 91.43 62.67 51.47 68.54 60.48 72.47
CGD [85] 82.25 80.39 71.62 83.40 62.67 49.66 66.73 59.33 69.51
GradNorm [86] 84.70 85.28 75.32 91.73 63.80 51.97 69.30 60.31 72.80

Table 4.3: Ablation study results on KILT validation data. We report page-level R-precision. Bold
indicates the best variant. Each line makes a single or multiple changes from the TACO model.
The performance of the recent general multitask algorithms, PCG [83], CGD [85] and GradNorm
[86], are obtained from our own implementation.

1.41% improvement over the task-specific CorpusBrain, but CorpusBrainmt is only slightly better

than its task-specific counterpart (+0.23% avg val).

51

4.4.3 Analysis

4.4.3.1 Ablation Study

Table 4.3 shows the results of ablation studies on KILT validation data.

Model components. We first conduct experiments to understand the impact of individual com-

ponents of our model. Removing task prefix results in 1.62% R-precision decrease and disabling

adaptive learning yields 1.08% R-precision decrease. Removing both task prefix and adaptive

learning significantly degrades the performance (-3.13%). This demonstrates that both task prefix

and adaptive learning contribute to the effectiveness of TACO.

Query variants. We conduct experiments to investigate other query side variants besides task

prefix. These variants are not trained with adaptive learning and only change the query input format

or model. Leveraging task-specific query encoder yields slightly better performance (70.87% vs

70.61%), but is outperformed by task prefix significantly (70.87% vs 72.66%). The task type

marker introduced in Maillard et al. [81] is not helpful for BERT-based MT-DPR, but we find them

effective for our T5-based model. This is likely because T5 is pretrained for multitasking. We

conduct experiments to leverage their task type markers for our model. Using task type markers

(i.e., 5 symbols indicating the 5 classes of task in KILT) leads to 1.24% R-precision improvement

(71.85% vs 70.61%), but is less effective than our fine-grained dataset-level task prefix (71.85% vs

72.66%).

Mutltitask learning variants. We compare our adaptive learning method with recent general

multitask learning algorithms with our own implementation. PCG [83] focuses on mitigating

the conflict of gradients from different tasks. It performs on par with the “w/o adaptive” variant

(72.47% vs 72.66%), but underperforms TACO which leverages our adaptive learning (72.47% vs

73.74%). This shows that the gradient conflict is not the main bottleneck in our multitask retrieval

setting. CGD [85] aims to improve multitask learning by encouraging update towards common

52

directions of different tasks, which is opposite to our method that encourages task specialties. It

performs much worse than TACO (69.51% vs 73.74% and lags behind the “w/o adaptive” vari-

ant significantly (69.51% vs 72.66%). This shows that we should encourage task specialty rather

than emphasizing tasks shared part for multitask retrieval. GradNorm [86] tries to weight different

tasks losses by using the average gradient norm. It performs slightly better than the naive “w/o

adaptive” variant (72.47% vs 72.66%). Our adaptive learning method achieves descent improve-

ment over GradNorm (73.74% vs 72.80%). Note that our adaptive update is more fine-grained

and critically different because we adjust learning rates along both task dimension and parameter

dimension compared with GradNorm that only do loss re-weighting.

Adaptive learning. We consider variations of the main version of adaptive learning which is ap-

plied only in the last ANCE episode. Specifically, we investigate the impact of applying adaptive

learning to the last four ANCE episodes using an exponential softmax temperature decay scheduler.

This approach yields an average page-level R-precision of 73.47%. In comparison, when adaptive

learning is applied only to the last ANCE episode, we achieve an average page-level R-precision of

73.74%. These results suggest that extending adaptive learning to more ANCE episodes does not

yield improvement. Additionally, we examine the effectiveness of encouraging task specialization

within adaptive learning. For this purpose, we focus on the second ANCE episode and experiment

with positive softmax temperature (encouraging task specialty) and negative softmax temperature

(discouraging task specialty). Encouraging task specialization results in an average page-level

R-precision of 70.53%, while discouraging task specialization leads to an average page-level R-

precision of 68.39%. In comparison, the performance of the standard multitask baseline at the

second ANCE episode is 69.28%. These results highlight the benefits of encouraging task spe-

cialization and the detrimental effect of discouraging task specialization within adaptive learning.

Normalizing task sensitivity using the median is preferred over using the mean or not applying any

normalization, as different tasks exhibit variations in magnitude while sharing similar distribution

shapes (see Figure 4.2).

53

Figure 4.1: Task entropy histograms for model variants

4.4.3.2 Task Specialization

Figure 4.1 plots the histograms of task entropy for the learned parameters. The task entropy for

each parameter is calculated with the distribution defined in equation 4.2. We first group parame-

ters into two special bins. The first is a “Task Specific” bin that includes parameters whose entropy

is smaller than 0.3, which is the entropy of 95% probability on one task and the 5% uniformly

on the rest seven. The “Not Activated” bin includes parameters whose sensitivity w.r.t. all tasks

is near zero (< 1e − 8). TACO significantly improves the fraction of task specific parameters to

22%, in comparison with 19% in naive multitask model (w/o prefix w/o adaptive). It also reduces

the fraction of not activated parameters, showing optimizing task specialty also better utilizes the

model capacity.

Figure 4.2 plots the kernel density estimated distribution of task-specific sensitivity in TACO

and the standard multitask model for four KILT tasks. We drop outliers that deviates significantly

from the median to ease visualization. Notably, TACO exhibits a noticeable reduction in the peak

on the low sensitivity side for each task compared to the standard multitasking model. This obser-

54

(a) NQ (b) WoW

(c) T-REx (d) FEV

Figure 4.2: Task-specific sensitivity density distribution on the training data of four KILT tasks.
The final models are used. The x-axis is sensitivity, and we drop outliers that are far from the
median to ease visualization.

vation suggests that TACO activates a larger number of parameters and enhances their sensitivity

towards individual tasks.

4.4.3.3 Additional Benchmark

To test the performance of TACO in a different setup other than KILT, we constructed an ad-

ditional benchmark containing MS-MARCO [98], ZESHEL [66], a document-level version of

55

MS ZES FEV NQ Avg

Task-specific 73.3 67.3 90.0 71.8 75.6
TACO 85.8 67.6 91.2 76.8 80.4
w/o adapt 85.9 67.5 91.3 76.6 80.3
w/o prefix, adapt 86.2 68.1 92.2 76.4 80.7
PCG 86.1 67.9 91.7 76.9 80.7
CGD 86.8 69.1 94.4 76.2 81.6
GradNorm 86.0 67.3 91.7 76.9 80.5

Table 4.4: Recall@100 on an additional benchmark containing MS-MARCO (MS), ZESHEL
(ZES), FEVER (FEV), and Natural Questions (NQ).

FEVER from BEIR [99], and Natural Questions from KILT. We chose this combination for a few

reasons. First, we found that few public datasets outside KILT provide sufficiently large and high-

quality training data other than MS-MARCO and ZESHEL. Second, each task now has its own

KB to retrieve from, making this a rather different setup from KILT in which all tasks share one

KB. We compare task-specific retrievers and multitask retrievers trained by TACO and other meth-

ods. Table 4.4 shows their recall at 100 on the validation split. We see that multitasking is clearly

beneficial for this benchmark. The best performance is obtained by CGD and it is the only multi-

task optimization method that yields noticeable improvements over the standard multitask model.

Given that CGD aims to improve multitask learning by encouraging update towards common di-

rections of different tasks, we hypothesize that the need for task specialization is diminished here

because the tasks are more similar in difficulty (e.g., in KILT, T-REx and zsRE are much easier

than HotpotQA). This experiment sheds light on what multitask settings most benefit from task

specialization.

4.5 Conclusions

Multitask retrieval has compelling practical advantages such as model simplicity and memory ef-

ficiency, but it lags behind task-specific retrieval in the existing literature. We have shown that it

is possible to significantly improve the performance of multitask retrieval by promoting task spe-

56

cialization. The key steps are the use of a base model optimized for multitasking with appropriate

prompting and a per-parameter adaptive learning technique that upweights the task gradients by

the parameters’ sensitivity to the task losses. We have achieved strong results on the KILT retrieval

benchmark.

57

CHAPTER 5

RETRIEVAL-AUGMENTED GENERATION WITH IMPLICIT QUERIES

This chapter is adapted from joint work with Xi Victoria Lin, Karl Stratos, Wen-tau Yih and

Mingda Chen entitled “ ImpRAG: Retrieval-Augmented Generation with Implicit Queries” [100].

Retrieval-Augmented Generation (RAG) systems traditionally treat retrieval and generation as

separate processes, requiring explicit textual queries to connect them. This separation can limit

the ability of models to generalize across diverse tasks. In this chapter, we propose a query-free

RAG system, named ImpRAG, which integrates retrieval and generation into a unified model.

ImpRAG allows models to implicitly express their information needs, eliminating the need for

human-specified queries. By dividing pretrained decoder-only language models into specialized

layer groups, ImpRAG optimizes retrieval and generation tasks simultaneously. Our approach em-

ploys a two-stage inference process, using the same model parameters and forward pass for both

retrieval and generation, thereby minimizing the disparity between retrievers and language mod-

els. Experiments on 8 knowledge-intensive tasks demonstrate that ImpRAG significantly enhances

both retrieval and generation performance, with exact match scores increasing by 3.6-11.5 points

and retrieval recalls improving by 5.0-23.2 points for unseen tasks with diverse formats, highlight-

ing its effectiveness in enabling models to articulate their own information needs and generalize

across tasks. Our analysis underscores the importance of balancing retrieval and generation pa-

rameters and leveraging generation perplexities as retrieval training objectives for enhanced per-

formance.

5.1 Introduction

Retrieval-Augmented Generation (RAG; [33, 7, 40]) typically involves two key operations: re-

trieval and generation. RAG systems retrieve relevant information to enhance generation models,

enabling them to respond more effectively to prompts by providing long-tail knowledge or up-

58

Passage

Key-Value States

Top-k Passages

Retrieve

Latent Query Vector

Cross Attention

EU rejects German call to boycott [START] British [END] lamb ...

Please output the Wikipedia title of the entity mentioned between
[START] and [END] in the given text

Large Language Model

United Kingdom

Figure 5.1: Diagram illustrating the inference process of ImpRAG on the entity linking task. We
divide decoder-only LLMs into three layer groups for specialized finetuning: bottom (green), mid-
dle (red), and top (blue). The bottom layers are optimized for retrieval tasks. The middle and
top layers handle the reading of retrieved passages, with cross-attention disabled in the top layers
to reduce memory consumption. Standard RAG systems would require a task-specific design of
queries (e.g., use the substring “British” as the query in the shown example). In contrast, ImpRAG
uses implicit queries, eliminating the need for explicit specification of queries and allowing models
to generalize across unseen tasks with varied formats.

to-date information. While effective, traditional approaches often treat retrieval and generation

as separate processes, connected by queries.1 Consequently, these approaches usually require ex-

plicit specification of textual queries. By definition, queries express one’s uncertainties; however,

in RAG systems, instead of models expressing their information needs, humans must do this for

them. This separation can lead to a disconnect between what large language models (LLMs) re-

quire and what retrievers assume is necessary. More importantly, it restricts the models’ ability

to generalize across diverse, unseen tasks during testing. Therefore, in this chapter, we explore

the development of a query-free RAG system, enabling models to articulate their own information

needs without additional human intervention.

To achieve this, we introduce ImpRAG, a novel approach that integrates retrieval and genera-

tion into a unified model and process. This allows models to convey their own information needs

1In this chapter, we use the term “queries” to refer to textual queries used in an information retrieval setup, unless
otherwise specified. This is distinct from queries in the context of self-attention within Transformer architectures.

59

implicitly, reducing the need for prior knowledge of test tasks and for humans to formulate explicit

textual queries in advance. At its core, ImpRAG aims to enable retrieval capabilities through re-

trieval heads in self-attention. Building upon pretrained decoder-only language models, ImpRAG

divides the layers into three groups: the bottom group for retrieval and the middle and top groups

for reading and generation.

Figure 5.1 illustrates an example of applying ImpRAG to the entity linking task, where models

are tasked with linking the mention ”British” to an entity in Wikipedia, given the context paragraph.

A typical RAG model would require the design of a separate query template, such as using only

the mention text, to achieve reasonable retrieval performance. In contrast, ImpRAG uses implicit

queries and can perform retrieval and generation jointly without the need for additional template

design, making it more generalizable.

During training, we optimize two objectives simultaneously: generation loss and retrieval loss.

The generation loss is the standard causal language modeling loss, while the retrieval loss first

utilizes pseudo labels generated by trained retrievers to warm up the retrieval ability and then

self-improves using its own generation log likelihood for the remainder of the training.

At inference time, we employ a two-stage process. First, we embed passages using the bottom

layer for retrieval, and then utilize the top layer group to read the retrieved passages and generate

the final responses. By leveraging the same forward pass and model parameters for both retrieval

and generation, ImpRAG reduces the disparity between retrievers and LLMs.

In experiments, we train models on datasets that either require retrieval or do not. The datasets

requiring retrieval are used to enhance retrieval performance, while those not requiring retrieval

are used to improve models’ instruction-following capabilities. We evaluate the models on 8

knowledge-intensive tasks, focusing on different aspects: basic question answering, multihop rea-

soning, and instruction following. We also establish strong baselines that perform RAG in the

retrieve-then-generate paradigm, including RA-DIT [38], a method that iteratively updates LLMs

and retrievers to better align the two.

Our experiments demonstrate that ImpRAG achieves slightly better performance on 4 tasks

60

with formats similar to the training tasks, with an improvement of 0.2-0.6 points in exact match

scores, all without the need for additional model parameters. Moreover, it significantly outperforms

previous approaches on unseen test tasks with more diverse formats, achieving improvements of

3.6-11.5 points in exact match scores and 5.0-23.2 points in retrieval recalls. This highlights the

effectiveness of enabling models to articulate their own information needs. Our analysis indicates

that carefully selecting layer group boundaries that balance the parameters used for retrieval and

generation, using both trained retrievers for warmup and then self-improve by leveraging genera-

tion perplexities as retrieval training objectives, and instruction tuning training datasets is crucial

for achieving superior performance in ImpRAG. Our analysis also reveals that ImpRAG is effec-

tive in transferring supervision from generation tasks to retrieval tasks, showing the potential of

using an unified model architecture for performing retrieval and generation jointly.

5.2 Related Work

There has been a lot of work on using the retrieve-then-generate paradigm for RAG [7, 40, inter

alia]. Many efforts in this line of work have focused on optimizing retrievers using training signals

from generation models, and optionally, the reverse [33, 7, 39, 40]. Although the specifics can

differ, these approaches generally utilize distinct models and input templates for the retrieval and

generation phases. A closely related study is that of Jiang et al. [101], which seek to use the same

model for retrieval and generation. However, their research primarily focuses on encoder-decoder

style models and their models still rely on separate input templates for retrieval and generation.

Another related work by Zhang et al. [102] explores the use of special tokens for retrieval, but

their study emphasizes in-domain task performance rather than unseen task generalization.

This chapter is also related to research on query formulation in the context of multihop question

answering, where previous studies typically generate textual queries by prompting LLMs, followed

by retrieval using a separate retriever [103, 43, 42, 104, 105, inter alia]. Chen et al. [106] enable

LLMs to generate textual queries through synthetic data generation. Additionally, this chapter is

connected to memory architectures in RAG [107, 108], which aim to utilize the key-value (KV)

61

caches of LLMs to reduce computational costs, rather than focusing on minimizing the disparities

between generation and retrieval.

Another relevant area of research is instruction tuning for RAG. Lin et al. [38] perform instruc-

tion tuning for both retrievers and LLMs and then align them through iterative updates. Wang et

al. [109] conduct instruction tuning for RETRO-like models [110, 111]. Zhang et al. [112] align

retrievers with LLMs using synthetic data generated by LLMs. Unlike our work, these studies still

treat retrieval and generation as separate processes. In a similar vein, researchers have tried to teach

retrievers to follow instructions for building general-purpose information retrieval systems [113,

114, 115, 116]. Since ImpRAG enables its retrieval capabilities by using self-attention, it is related

to research on investigating retrieval heads in the context of long context LLMs [117].

5.3 Method

We build on an autoregressive pretrained language model and enable it to perform retrieval and

generation jointly. Our model, ImpRAG, is based on the LLaMA 3 family [5], with architectural

modifications to support retrieval and retrieval-augmented generation. At a high level, the layer

grouping strategy of ImpRAG is inspired by the observation that LLMs learn distinct functions at

different layers [118]. Consequently, we have designed the layer groups to align with the capabili-

ties required for retrieval-augmented generation, i.e., retrieval and generation.

5.3.1 Architecture

Layer Slicing. We partition anN -layer language model vertically into three groups, as illustrated

in Figure 5.1. The bottom group, spanning layers 0 to b, is denoted as LB. The middle group, from

layer b to t, is denoted as LM, and the top group, from layer t + 1 to N−1, as LT . Note that LB

and LM share layer b, while LM and LT are disjoint. The layer boundaries b and t are treated as

hyperparameters and can be tuned to optimize performance across different model configurations.

62

Bottom Layers as Retriever. We repurpose the bottom group LB to act as a retriever, in addition

to its standard decoder functionality. Specifically, we apply pooling last-token pooling over the

attention query or key states at the final layer b in LB. Unlike prior work [119], we retain the

original causal attention in the bottom layers rather than enabling bidirectional attention, as we do

not observe any performance improvement from this modification.

Let hk be the number of key attention heads, g the number of query attention groups (as in

Grouped-Query Attention [120]), and dh the head dimension. For a query input, we apply last-

token pooling by taking the query attention state of its final token, resulting in a grouped query

embedding Eg
q ∈ R(hkg)dh . We then average the attention heads within each group to obtain the fi-

nal query embedding Eq ∈ Rhkdh .2 Similarly, for each corpus passage, we extract the key attention

state of its last token to compute the passage embedding Ep ∈ Rhkdh . Similarity between query

and passage embeddings is computed via dot product:

s(q, p) = Eq · Ep (5.1)

We choose to pool over query and key attention states based on the intuition that their dot

product underlies the attention mechanism and is pretrained to capture token-wise relevance. By

aggregating these signals across tokens, we aim to capture query-passage-level semantic relevance.

Middle Layers as Reader. The middle layer group LM functions as a reader by enabling cross-

attention from the input query tokens to the retrieved passage tokens, thereby incorporating ex-

ternal information into the query representation. Given k retrieved passages, we jointly encode

the concatenation of all k passages to form the key and value states for layers b through t. Cross-

attention is then performed from the query’s attention states to these key and value states, allowing

the model to read and integrate relevant content from the passages. This aligns with prior find-

ings that middle layers of language models are particularly effective at attending to and integrating

long-range contextual information [121, 107].

2Our preliminary results show that taking average heads works slightly better than using individual heads.

63

Top Layers Disable Cross-Attention. In the top layer group LT , we optionally disable cross-

attention from the input query tokens to the retrieved passage tokens solely to reduce computational

and memory overhead. This design choice is made for efficiency purposes; empirically, we find

it results in only a minor performance drop when the layer boundary t is properly tuned as a

hyperparameter.

Position IDs. Language models using RoPE [122] are highly sensitive to position IDs. To prevent

interference between the query and passage position encodings during reading, we shift the query’s

position IDs to the right rather than starting from zero. Let lmax denote the maximum passage

length and k the number of retrieved passages. We shift the query position IDs by k · lmax tokens

to account for the total length.

5.3.2 Training

We train ImpRAG using a multi-task objective that jointly optimizes generation and retrieval:

J = Jgen(r | q, C) + λ · Jret(q, C) (5.2)

Here, Jgen(r | q, C) denotes the generation loss, implemented as the standard causal language

modeling loss over the response tokens r, conditioned on the input query q and a set of sampled

candidate passages C. The term Jret(q, C) denotes the retrieval loss, computed over the query q

and the same set of candidate passages C, and is further detailed in the two-stage formulation

described in Section 5.3.2.1. The hyperparameter λ balances the relative importance of the retrieval

loss, allowing us to control the trade-off between retrieval accuracy and generation quality during

training.

64

5.3.2.1 Retrieval Objective

While the overall training objective remains consistent across both stages—combining generation

and retrieval losses as in (5.2)—the retrieval loss component Jret varies depending on the training

phase. In this section, we describe the two-stage training process used to endow ImpRAG with

strong retrieval capabilities.

Warmup. Since the pretrained language model is not inherently optimized for retrieval, we begin

with a warmup stage that introduces basic retrieval ability. We adopt a Multi-Label NCE loss [123]

as the retrieval objective and construct supervision using pseudo-labeled data generated by a strong

off-the-shelf retriever, Contriever-MSMARCO [124]. For each query q, we retrieve the top-5

passages as pseudo-positive examples, denoted by P(q). We then sample a small set of pseudo

hard negatives, denoted by Nh(q) (e.g., |Nh(q)| < 10), from passages ranked 10–50.3 While

these passages may still be somewhat relevant, they are less likely to contain the key information

necessary to answer the query. This selection introduces meaningful retrieval difficulty. We also

use in-batch negatives across devices as additional random negatives Nr(q). The full negative set

is N (q) = Nh(q) ∪ Nr(q), and the candidate set is C = P(q) ∪ N (q). The retrieval loss for this

stage is defined as:

Jret(q, C) = −
∑

p∈P(q) log
(

exp(s(q,p))
exp(s(q,p))+

∑
p′∈N (q) exp(s(q,p

′))

)
(5.3)

Self-Distillation. To further enhance retrieval performance, we employ language model perplex-

ity distillation [39], which assesses how much each candidate passage improves the language

model’s likelihood of generating the ground-truth response, conditioned on the query. Specifically,

for each candidate passage p ∈ C, we compute the log-likelihood of the gold response r given the

concatenation of p and q, denoted as logPLM(r | p, q). This defines a soft target distribution over

3We find this approach effective in preliminary experiments, though we did not perform extensive hyperparameter
tuning.

65

candidate passages:

PT (p | q, r) =
exp(logPLM(r | p, q))∑

p′∈C exp(logPLM(r | p′, q))
(5.4)

We also define the retrieval model’s predicted distribution based on the similarity scores:

PR(p | q) =
exp(s(q, p))∑

p′∈C exp(s(q, p
′))

(5.5)

The retrieval loss is then computed as the KL divergence between the target and predicted

distributions:

Jret(q, C) = KL
(
PT (p | q, r) ∥ PR(p | q)

)
(5.6)

Here, PT (p | q, r) indicates that gradients are not backpropagated through the target distribu-

tion. Note that this stage also involves joint training; the only difference from the warmup phase

lies in the retrieval loss Jret.

5.3.3 Inference

At inference time, we first embed all passages in the knowledge corpus using the bottom layer

group LB of the model. These embeddings are stored in an approximate nearest neighbor (ANN)

index (e.g., FAISS [19]) hosted on a remote server for efficient retrieval.

As illustrated in Figure 5.1, given a query, the ImpRAG model performs the following steps to

generate a response:

1. The bottom layers LB encode the input query and generate a query embedding, which is sent

to the remote ANN search server.

66

2. The ANN server retrieves the top-k most relevant passages based on the query embedding

and returns their passage IDs.

3. The middle layers LM continue processing the information by applying cross-attention to

the KV states of the retrieved passages.

4. The top layers LT complete the encoding and decoding process without cross-attention,

generating the next token.

5. The above steps are repeated at each decoding step. Notably, the query embeddings are

computed only once at the end of the input prompt, and passage retrieval is not re-triggered

thereafter.4 In subsequent decoding steps, cross-attention continues to use the cached key-

value states, and this process repeats until the model reaches a stopping criterion (e.g., an

end-of-sequence token).

5.4 Experiment

5.4.1 Experimental Setup

Training. For training, we consider two types of datasets: (1) datasets requiring retrieval knowl-

edge: NaturalQuestions (NQ; [125]) and HotpotQA (Hopo; [126]); and (2) datasets without requir-

ing retrieval knowledge, where we use the instruction tuning datasets from Lin et al. [38] (see Ap-

pendix C.4 for a complete list of these datasets). Inspired by Chen et al. [127], we also incorporate

two synthetic, retrieval-free tasks into the training to enhance instruction-following capabilities:

phrase denoising, and next/previous sentence generation. The training data for phrase denoising is

generated by prompting LLMs (we use Llama-3.1 70B) with a paragraph from Wikipedia. For the

sentence generation task, we construct it randomly using content from Wikipedia.

For all these datasets, we use a subset of 5,000 examples from their training splits in each

dataset. In addition, we use 1,000 examples from the NQ dev split as the development set. We

4While ImpRAG is general and can be adapted for iterative retrieval, we intend to focus this chapter on the single
retrieval setup and will leave iterative retrieval for future work.

67

use the December 2021 Wikipedia from Izacard et al. [39] as our knowledge corpus. Additionally,

we spend approximately 10% of training on plain text from Wikipedia to prevent models from

overfitting to the downstream tasks.

Task Template
Knowledge-Intensive Tasks
NQ, Hopo, SQA, 2WQA Q: {question} A: {answer}
AIDA {context} Output the Wikipedia page title of the entity men-

tioned between [START] and [END] in the given text A:
{answer}

FEV Is this statement true? {statement} A: {answer}
T-Rex, ZsRE {entity} [SEP] {relation} Provide the answer corresponding to

the relation specified after [SEP] for the entity mentioned before
[SEP] A: {answer}

Instruction-Tuning Tasks
Dialogue Completion {turn1} {turn2} {turn3} ...
Reading Comprehension {context} Q: {question} A: {answer}
Summarization {context} Summarize this article: {summary}
Phrase Denoising {context} Recover the original phrases marked between

[START] and [END] in the given text A: {answer}
Sentence Generation {context} [SEP] next/previous sentence Generate a sentence cor-

responding to the relation specified after [SEP] for the context
mentioned before [SEP] A: {sentence}

Table 5.1: Prompt templates. We only use retrieval for knowledge-intensive tasks. For simplicity,
we list task categories for a subset of the instruction tuning datasets. See Appendix C.4 for more
detailed description.

Evaluation. We evaluate models on 8 different knowledge-intensive tasks to assess their various

capabilities, specifically:

• Basic question answering: NQ, SimpleQA (SQA; [128]);

• Multihop reasoning: Hopo, 2WikiMultiHopQA (2WQA; [129]);

• Instruction following: (1) relation extraction: T-Rex [130], ZsRE [131];

(2) fact checking: FEVER (FEV; [11]);

(3) entity linking: AIDA [132].

For all these datasets, we report exact matches as the evaluation metric for generation tasks

and recall rates for retrieval tasks. The retrieval recall is measured by the percentage of instances

68

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
Llama-3.23B
+RA-IT 43.2 (77.0) 38.1 (48.2) 35.9 (48.8) 33.4 (43.3) 54.2 (84.3) 58.1 (86.6) 79.2 (-) 40.1 (38.1) 47.8 (60.9)
+RA-DIT 43.4 (77.5) 38.8 (48.7) 36.4 (49.3) 34.0 (43.5) 55.0 (85.0) 59.0 (87.2) 80.5 (-) 41.0 (38.2) 48.5 (61.3)
+RA-DIT-Llama 43.9 (78.0) 39.8 (49.9) 37.0 (49.8) 35.1 (44.0) 55.8 (85.9) 60.0 (87.9) 80.2 (-) 41.1 (38.4) 50.4 (64.0)
+ImpRAG 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)
Llama-3.18B
+RA-IT 45.1 (77.0) 39.0 (48.2) 36.9 (48.8) 34.4 (43.3) 55.0 (84.3) 59.1 (86.6) 83.2 (-) 41.1 (38.1) 49.2 (60.9)
+RA-DIT 45.7 (77.7) 38.9 (48.9) 37.2 (49.1) 34.9 (44.0) 56.1 (85.4) 60.1 (87.8) 85.1 (-) 41.5 (38.8) 49.9 (61.7)
+RA-DIT-Llama 46.1 (78.7) 40.7 (50.3) 37.9 (50.2) 35.6 (44.8) 57.0 (86.1) 61.2 (88.1) 86.2 (-) 42.1 (39.2) 50.9 (62.5)
+ImpRAG 46.4 (79.1) 41.3 (51.2) 38.4 (50.9) 36.0 (45.2) 62.5 (92.7) 67.1 (94.0) 89.2 (-) 54.2 (62.4) 54.4 (67.9)

Table 5.2: Evaluation results for 8 knowledge-intensive tasks. We report exact match scores for
generation tasks and retrieval recall (shown in parentheses) for retrieval tasks. Retrieval recall is
not reported for FEV, as it is a classification task. All these methods use retrieval augmentation.

where the top-retrieved results contain the answers as substrings. We omit retrieval recall for FEV

as it is a classification task where the answer strings are either “True” or “False”.

For Hopo, T-Rex, ZsRE, FEV, and AIDA, we use development sets from the KILT bench-

mark [7]. For SQA and NQ, we use the official test set. For 2WQA, we use their development set.

For all datasets, we utilize the entire input prompts as queries for the retrievers. We describe our

task templates in Table 5.1.

Baselines. We consider 3 baseline models:

• Retrieval Augmented Instruction Tuning (RA-IT): This approach involves directly incorporating

retrieved passages from Contriever-MSMARCO into the context and fine-tuning the language

models (LMs) on the training data;

• Retrieval Augmented Dual Instruction Tuning (RA-DIT; [38]): In this method, we first fine-tune

the Contriever-MSMARCO on the training subsets of NQ and HotpotQA using Equation 5.6.

Subsequently, we perform fine-tuning as in RA-IT, utilizing the fine-tuned retriever;

• RA-DIT with Llama as the Retriever (RA-DIT-Llama): Here, we replace the Contriever used

in RA-DIT with the first 8 layers from the Llama models.5 To ensure effective retrieval perfor-

mance, we initially warm up the Llama retrievers with pseudo labels generated by Contriever-

MSMARCO using Equation 5.3.
5We choose to use first 8 layers for fair comparison as ImpRAG uses the same layers for retrieval.

69

2 4 6 8 10 12
Layer Boundary b

30

40

50

60

70

80

27.4

49.1

29.5

55.1

30.5

62.4

30.7

61.9

36.3

69.0

40.2

75.0

45.1

81.0

44.5

81.5

44.0

82.1

44.1

82.2

43.2

81.6

42.1

80.5

Contriever Retrieval Recall
Exact Match
Retrieval Recall

10 12 14 16 18
Layer Boundary t

30

40

50

60

70

80

30.2

70.2

32.5

71.4

34.2

74.3

35.5

74.9

37.9

76.2

41.3

77.2

41.1

77.1

42.5

78.3

44.0

80.7

44.5

80.9

45.1

81.0

Exact Match
Retrieval Recall
Contriever Retrieval Recall

Figure 5.2: Exact match and retrieval recall on the NQ dev set using Llama-3.2 3B with different
values of b (left side) and t (right side). When varying one layer boundary, we keep the other
constant.

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
self-distillation only 29.9 (61.2) 30.1 (39.9) 29.8 (41.9) 27.5 (37.4) 35.6 (64.9) 40.9 (65.9) 67.7 (-) 28.3 (22.5) 36.2 (47.7)
warmup only 44.0 (78.3) 39.9 (50.0) 37.1 (50.0) 35.1 (44.2) 56.5 (87.0) 61.2 (88.3) 81.0 (-) 45.2 (42.9) 50.0 (63.0)
warmup+self-distillation 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)

Table 5.3: Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using
Llama-3.2 3B as the base model, trained with different retrieval objectives.

Hyperparameters. We use Llama-3.2 3B and Llama-3.1 8B as the base models for ImpRAG.

For both models, the layer boundary b is set to 7.6 For Llama-3.2 3B, the layer boundary t is 19,

while for Llama-3.1 8B, it is 23. We train for 10 epochs and perform the retrieval warmup in the

first 3 epochs. When retrieving passages, we take the top 10 most relevant documents.

See Appendix C.5 for more details on the baselines and computational resources.

5.4.2 Experimental Result

Table Table 5.2 presents our main evaluation results. Each model variant—RA-IT, RA-DIT, RA-

DIT-Llama, and ImpRAG —exhibits different performance levels, with ImpRAG consistently

achieving the highest scores across all tasks. For Llama-3.2 3B, the average exact match score

increases from 47.8 with RA-IT to 52.5 with ImpRAG, while for Llama-3.1 8B, the score rises

from 49.2 to 54.4. Although RA-DIT shows improvements over RA-IT, ImpRAG further en-

6Since we label the first layer of a LLM as layer 0, a layer boundary b of 7 means that the bottom layer group
contains the first 8 layers.

70

T-Rex ZsRE FEV AIDA avg
No templates 55.8 (85.9) 60.0 (87.9) 80.2 (-) 41.1 (38.4) 59.3 (70.7)
Oracle templates 61.4 (90.7) 66.0 (93.6) 83.9 (-) 66.1 (72.3) 69.4 (85.5)
ImpRAG 60.8 (90.2) 65.9 (93.5) 83.8 (-) 52.6 (58.3) 65.8 (80.7)

Table 5.4: Exact match scores and retrieval recall (shown in parentheses) for RA-DIT-Llama using
Llama-3.2 3B as the base model, evaluated with various query templates. In the case of “no
templates”, the inputs to the LLMs are used directly as queries.

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
ImpRAG 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)
w/o all IT tasks 42.9 (76.4) 38.1 (48.2) 35.2 (47.7) 33.7 (42.0) 43.5 (69.3) 49.5 (70.2) 76.2 (-) 25.4 (20.5) 43.1 (53.5)
w/o PD and SG 44.0 (78.5) 40.1 (50.1) 37.4 (50.3) 35.4 (44.4) 53.3 (82.8) 57.1 (84.9) 81.2 (-) 40.5 (41.2) 48.6 (61.7)

Table 5.5: Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using
Llama-3.2 3B as the base model, trained with different combinations of instruction tuning datasets.
IT tasks refer to instruction tuning tasks, PD stands for phrase denoising, and SG denotes sentence
generation.

hances performance. Notably, ImpRAG significantly outperforms RA-DIT-Llama, indicating that

the improvements are not merely due to using a more powerful base model (i.e., the first 8 layers of

Llama models) for retrieval. Importantly, the enhancements are evident in both exact match scores

and retrieval recalls, demonstrating that ImpRAG improves both generation quality and retrieval

performance. It is worth noting that compared to the baseline approaches, the most substantial

improvements with ImpRAG are seen in tasks that queries need to be formulated more differently

from input prompts, such as T-Rex, ZsRE, FEVER, and AIDA. Among these tasks, AIDA shows

the most significant improvements, with over a 20-point increase in retrieval recall and more than

a 10-point rise in exact match scores for both Llama-3.1 3B and Llama-3.1 8B, likely due to the

inadequacy of directly using input prompts as queries in AIDA. This underscores ImpRAG’s ef-

fectiveness in formulating implicit queries and embedding instruction-following capabilities into

retrievers. Overall, these results demonstrate that ImpRAG significantly enhances the models’

ability to accurately retrieve and apply knowledge, with improvements more significant in tasks

requiring diverse formats.

71

5.5 Analysis

5.5.1 Layer Group Boundary Ablation

In this section, we examine the effects of the layer boundaries b and t. The findings are presented in

Figure 5.2. To facilitate comparison, we vary one layer boundary while keeping the other constant.

We note that increasing b reduces the number of layers allocated to the middle layer group, which

includes layers for reading and generation. Conversely, increasing t does not affect the retrieval

layers. Overall, we find that increasing b enhances retrieval recall, with improvements leveling

off once b reaches 7. This plateau is likely due to diminished generation performance, which

results in less precise training signals for self-distillation. This underscores the importance of

balancing parameters between retrieval and generation. On the other hand, as expected, increasing

t consistently yields improvements. Although these improvements seem to plateau at 19, we refrain

from further increasing t primarily due to memory constraints. We plan to leave more memory-

efficient training of ImpRAG for future exploration.

5.5.2 Retrieval Objective Ablation

We conduct experiments to compare the effects of different retrieval training objectives. The results

are presented in Table 5.3. During training, we consistently apply each retrieval objective through-

out the entire process. For instance, in the ”warmup only” experiment, we extend the use of the

warmup objective to 10 epochs instead of limiting it to the initial 3 epochs. Our findings indicate

that the warmup objective provides a baseline performance across all tasks and is particularly ben-

eficial for tasks with direct supervision. Self-distillation builds on this baseline, further enhancing

model performance on unseen test tasks. Overall, the two training objectives complement each

other effectively.

72

5.5.3 Effect of Query Templates

We also examine the impact of using different query templates for the baseline approach, RA-DIT-

Llama. The results are detailed in Table 5.4. In these experiments, we omit QA tasks because their

“no templates” and “oracle templates” setups are almost the same. Overall, “oracle templates” still

provides the best performance. The improvements are particularly notable on AIDA. However,

it is important to highlight that ImpRAG achieves highly competitive performance on 3 out of 4

tasks and already shows significant improvement on the remaining task compared to using “no

templates.”

5.5.4 Effect of Instruction Tuning for Retrieval

In Table 5.5, we explore the effects of training on instruction tuning datasets. The table shows

that omitting all instruction tuning datasets leads to a decline in model performance on both in-

domain tasks (NQ, SQA, Hopo, and 2WQA) and out-of-domain tasks. Notably, removing only

phrase denoising and sentence generation has a minimal impact on in-domain tasks but causes

more pronounced negative effects on out-of-domain tasks, except for FEV. This exception likely

arises because FEV’s task format is more similar to the in-domain tasks than other tasks. This

suggests that instruction tuning tasks aid models in understanding task formats, and ImpRAG can

transfer this knowledge from generation to retrieval due to its unified model architecture.

5.6 Conclusions

We present ImpRAG, a query-free retrieval-augmented generation (RAG) system that implicitly

captures information needs without requiring human-specified queries. Unlike prior work that

treats retrieval and generation as separate components with independently trained models, Im-

pRAG unifies them within a single decoder-only language model by partitioning it into specialized

layer groups and jointly optimizing for both retrieval and generation. The same model parame-

ters and forward pass are shared across retrieval and generation, effectively minimizing the mis-

73

match between the retriever and the generator. ImpRAG demonstrates strong performance across

eight knowledge-intensive tasks, outperforming traditional RAG systems and delivering substantial

gains on unseen tasks with diverse formats.

Part II

Entity-Centric Language Understanding

74

75

CHAPTER 6

ENTITY LINKING AS QUESTION ANSWERING

This chapter is adapted from joint work with Wenyue Hua and Karl Stratos entitled “ EntQA:

Entity Linking as Question Answering” [123].

A conventional approach to entity linking is to first find mentions in a given document and then

infer their underlying entities in the knowledge base. A well-known limitation of this approach is

that it requires finding mentions without knowing their entities, which is unnatural and difficult. We

present a new model that does not suffer from this limitation called EntQA, which stands for Entity

linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval mod-

ule, and then scrutinizes the document to find mentions of each candidate with a powerful reader

module. Our approach combines progress in entity linking with that in open-domain question an-

swering and capitalizes on pretrained models for dense entity retrieval and reading comprehension.

Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak

supervision. EntQA achieves strong results on the GERBIL benchmarking platform.

6.1 Introduction

We consider the most general form of entity linking (EL) in which a system, given a document,

must both extract entity mentions and link the mentions to their corresponding entries in a knowl-

edge base (KB). EL is a foundational building block in automatic text understanding with applica-

tions to question answering (QA) [133], information retrieval [134, 135, 136, 137], and commercial

recommendation systems [138, 139].

The output space in EL is intractably large. Any subset of all possible spans in the document

linked to any KB entries (typically in the order of millions) can be a system output. To get around

the intractability, existing methods decompose EL into mention detection (MD) and entity disam-

biguation (ED) and tackle them with varying degrees of independence. In all cases, however, the

76

order of these two subproblems is MD followed by ED: first the system identifies potential entity

mentions, and then the mentions are resolved to KB entries. Previous works either assume that

mentions are given [46], run an off-the-shelf named-entity recognition (NER) system to extract

mentions and resolve them by ED (MD→ED pipeline) [47, 48, 49], or train an end-to-end model

that jointly performs MD→ED by beam search [8, 22].

A limitation of performing MD before ED is that it requires finding mentions without knowing

the corresponding entities. By definition, a mention needs an entity (i.e., a mention of what?).

Existing methods suffer from the dilemma of having to predict mentions before what they refer

to, which is unnatural and difficult. For example, the MD→ED pipeline heuristically extracts

mentions from spans of named entities found by a third-party NER system, and the performance

bottleneck is often errors in MD propagated to ED. End-to-end models alleviate the problem of

error propagation, but the search is only approximate and the dilemma, albeit to a lesser degree,

remains.

In this chapter, we propose flipping the order of the two subproblems and solving ED before

MD. We first find candidate entities that might be mentioned in the given document, then for

each candidate find its mentions if possible. Our key observation is that while finding mentions

is difficult without the knowledge of relevant entities, finding relevant entities is easy without the

knowledge of their specific mentions. This simple change fundamentally solves the dilemma above

since identifying mentions of a particular entity is well defined.

We cast the problem as inverted open-domain QA. Specifically, given a document, we use a

dual encoder retriever to efficiently retrieve top-K candidate entities from the KB as “questions”.

Then we apply a deep cross-attention reader on the document for each candidate to identify men-

tions of the candidate in the document as “answer spans”. Unlike in standard QA, the model must

predict an unknown number of questions and answers. We present a simple and effective solu-

tion based on thresholding. We call our model EntQA, standing for Entity linking as Question

Answering.

Beyond conceptual novelty, EntQA also offers many practical advantages. First, EntQA allows

77

us to piggyback on recent progress in dense entity retrieval and open-domain QA. For instance,

we warm start EntQA with the BLINK entity retriever [67] and ELECTRA finetuned on a QA

dataset [140] to obtain an easy improvement. Second, EntQA has no dependence on a hardcoded

mention-candidates dictionary which is used in previous works to reduce the search space and bias

the model [141, 8, 22]. The dictionary is typically constructed using a large KB-specific labeled

corpus (e.g., Wikipedia hyperlinks), thus having no dependence on it makes our approach more

broadly applicable to KBs without such resources. Third, training EntQA is data efficient and

can be done with an academic budget, in contrast with GENRE [22] which requires industry-scale

pretraining by weak supervision.

EntQA achieves strong performance on the GERBIL benchmarking platform [142]. The in-

domain F1 score on the test portion of the AIDA-CoNLL dataset is 85.8 (2.1 absolute improve-

ment). The macro-averaged F1 score across 8 evaluation datasets is 60.5 (2.3 absolute improve-

ment).1 We analyze EntQA and find that its retrieval performance is extremely strong (over 98

top-100 recall on the validation set of AIDA), verifying our hypothesis that finding relevant enti-

ties without knowing their mentions is easy. We also find that the reader makes reasonable errors

such as accurately predicting missing hyperlinks or linking a mention to a correct entity that is

more specific than the gold label.

6.2 Model

Let E denote the set of entities in a KB associated with a text title and description. Let V denote

the vocabulary and X =
{
x ∈ VT : 1 ≤ T ≤ Tmax

}
the set of all documents up to length Tmax. EL

is the task of mapping x ∈ X to y ∈ P(Y(x)) where Y(x) = {(s, t, e) : 1 ≤ s ≤ t ≤ |x| , e ∈ E}

is the set of all possible linked spans in x and P is the power set. The size of the output space

is O(2T 2
max|E|) where |E| is typically very large (e.g., around 6 million in Wikipedia) and Tmax can

also be large (e.g., > 3000 in AIDA), ruling out any naive exhaustive search as a feasible approach.

EntQA decomposes EL into two subproblems: entity retrieval and question answering. More

1Code available at: https://github.com/WenzhengZhang/EntQA

https://github.com/WenzhengZhang/EntQA

78

specifically, given a document x ∈ X ,

1. The retriever module retrieves top-K candidate entities that might be mentioned in x.

2. The reader module extracts mentions of each candidate entity in x (or rejects it), then returns

a subset of globally reranked labeled mentions as the final prediction.

Our approach bears superficial similarities to a standard framework in open-domain QA that

pipelines retrieval and span finding [31, inter alia], but it has the following important differences.

First, instead of retrieving passages given a question, it retrieves questions (i.e., candidate entities)

given a passage. Second, even when considering a single question, there can be multiple answer

spans (i.e., mentions) instead of one. Both the number of gold entities present in a document and

the number of mentions of each gold entity are unknown, making this setting more challenging

than standard QA in which we only need to find a single answer span for a single question on a

passage.

Input representation. Both the retriever and the reader work with text representations of doc-

uments and entities, thus applicable to a zero-shot setting (e.g., linking to a new KB at test time

by reading entity descriptions). We use the title ϕtitle(e) ∈ V+ and the description ϕdesc(e) ∈ V+

to represent an entity e ∈ E . Since a document x ∈ X is generally too long to encode with a

Transformer encoder which has a quadratic dependency on the input length, we break it down in

mx ∈ N overlapping passages p1(x) . . . pmx(x) ∈ VL of length L with stride S (e.g., L = 32 and

S = 16) and operate at the passage-level similarly as in QA [143]. When a document is long, indi-

vidual passages may lose global information. For long documents, we find it beneficial to carry a

document-level topical text ψtopic(x) ∈ V+ across passages in that document (e.g., first sentence).

We emphasize that we do not use any extra information outside the document. In our experiments

we simply set ψtopic(x) = x1 ∈ V (i.e., the first token in the document).

Notation. We write encθS : VT → Rd×T to denote a Transformer encoder that maps any token

sequence to the same-length sequence of corresponding contextual embeddings; the symbol S is

79

used to distinguish different encoders. We assume the usual special tokens in the input popularized

by BERT [1]: [CLS] to represent the whole input and [SEP] to indicate an input boundary.

We write ⊕ to denote the text concatenation; we insert an unused token type in the vocabulary in

between two texts being concatenated. We write Mi ∈ Rd to denote the i-th column of matrix

M ∈ Rd×T .

6.2.1 Retriever

Given a passage p ∈ V+ in document x and an entity e ∈ E , the retriever computes

P = encθP ([CLS]p[SEP]ψtopic(x))

Ee = encθE([CLS]ϕtitle(e)⊕ ϕdesc(e)[SEP])

scoreθretr(p, x, e) = P⊤
1 E

e
1

At inference time, we precompute Ee ∈ Rd for each e ∈ E and use Faiss [144] for fast top-K

retrieval.

Training. We train the retriever by a multi-label variant of noise contrastive estimation (NCE).

Given a passage p in document x, we have a set of multiple gold entities E(p) ⊂ E that are

mentioned in the passage and optimize the per-example objective

max
θ

∑
e∈E(p)

log

(
exp

(
scoreθretr(p, x, e)

)
exp

(
scoreθretr(p, x, e)

)
+
∑

e′∈N(E,p) exp
(
scoreθretr(p, x, e

′)
)) (6.1)

where N(E , p) ⊂ E\E(p) is a set of negative examples that excludes all gold entities E(p). The

objective effectively constructs |E(p)| independent NCE instances, each of which treats a gold

entity as the only correct answer while ensuring that other gold entities are not included in negative

examples. We obtain 90% of N(E , p) by sampling entities uniformly at random from E\E(p) and

10% by hard negative mining (i.e., using highest-scoring incorrect entities under the model), which

is well known to be beneficial in entity retrieval [15, 67, 60].

80

6.2.2 Reader

Let e1:K = (e1 . . . eK) ∈ EK denote K candidate entities for a passage p in document x. For each

k ∈ {1 . . . K}, the reader computes a joint encoding of (p, x, ek) by

Hk = encθH([CLS]p⊕ ψtopic(x)[SEP]ϕtitle(ek)⊕ ϕdesc(ek)[SEP])

then defines a conditional distribution over mention spans of ek in p by

pθstart(s|p, x, ek) =
exp

(
w⊤

startH
k
s

)∑|p|+1
i=1 exp

(
w⊤

startH
k
i

) ∀s ∈ {1 . . . |p|+ 1}

pθend(t|p, x, ek) =
exp

(
w⊤

endH
k
t

)∑|p|+1
i=1 exp

(
w⊤

endH
k
i

) ∀t ∈ {1 . . . |p|+ 1}

pθspan(s, t|p, x, ek) = pθstart(s|p, x, ek)× pθend(t|p, x, ek) ∀s, t ∈ {1 . . . |p|+ 1}

where wstart, wend ∈ Rd are additional parameters. The reader also multitasks reranking: it uses

wrerank ∈ Rd to define a conditional distribution over candidate entities by

pθrerank(ek|p, x, e1:K) =
exp

(
w⊤

rerankH
k
1

)∑K
k′=1 exp

(
w⊤

rerankH
k′
1

) ∀k ∈ {1 . . . K}

Training. We obtain candidates e1:K from a fully trained retrieval module to make training con-

sistent with test time. During training, we always include all gold entities as candidates (i.e.,

E(p) ⊂ e1:K). LetM(p, e) denote the set of gold mention spans of e ∈ E in p; if e is not present

in p, we defineM(p, e) = {(1, 1)}. We optimize the per-example objective

max
θ

K∑
k=1

1(ek ∈ E(p)) log pθrerank(ek|p, x, e1:K) +
∑

(s,t)∈M(p,ek)

log pθspan(s, t|p, x, ek) (6.2)

where 1(A) is the indicator function equal to one if A is true and zero otherwise. Note that the

reader is trained to predict the [CLS] span for incorrect entities.

81

6.2.3 Inference

At test time, we process a new document x ∈ X in passages p ∈ VL independently as follows:

1. Retrieve top-K highest scoring entities e1:K under scoreθretr(p, x, e).

2. For each candidate k, extract top-P most likely mention spans (sk1, t
k
1) . . . (s

k
P , t

k
P) under

pθspan(s, t|p, x, ek) while discarding any span less probable than (1, 1).

3. Return a subset of the surviving labeled mentions (s, t, ek) with pθrerank(ek|p, x, e1:K) ×

pθspan(s, t|p, x, ek) > γ as the final prediction.

We do not apply any further processing to combine passage-level predictions other than merging

duplicate labeled spans (s, t, e) in the overlapping sections. This inference scheme is simple yet

effective. For each candidate entity, the reader scrutinizes the passage with deep cross-attention to

see if there are any mentions of the entity and has a chance to reject it by predicting (1, 1). The

reader delays its final decision until it has processed all candidates to globally reconsider labeled

mentions with ranking probabilities. Figure 6.1 shows a successful prediction on a passage from

the validation portion of AIDA.

6.3 Experiments

We evaluate EntQA on the GERBIL benchmarking platform [142], which offers reliable compari-

son with state-of-the-art EL methods on numerous public datasets.

6.3.1 Setting

Datasets. We follow the established practice and report the InKB Micro F1 score on the in-

domain and out-of-domain datasets used in [22]. Specifically, we use the AIDA-CoNLL dataset

[47] as the in-domain dataset: we train EntQA on the training portion of AIDA, use the valida-

tion portion (AIDA-A) for development, and reserve the test portion (AIDA-B) for in-domain test

performance. We use seven out-of-domain test sets: MSNBC, Derczynski (Der) [145], KORE 50

82

Passage

After bowling [Somerset]3 out for 83
on the opening morning at [Grace
Road]2, [Leicestershire]1 extended
their first innings by 94 runs before
being bowled out for 296 with [Eng-
land]11

Top-K candidate entities
1. Leicestershire County Cricket Club
2. Grace Road
3. Somerset County Cricket Club

✗ 4. Durham County Cricket Club
✗ 5. Nottinghamshire County Cricket Club
✗ 6. Derbyshire County Cricket Club
✗ 7. Warwickshire County Cricket Club
✗ 8. Leicestershire
✗ 9. Worcestershire County Cricket Club
✗ 10. Yorkshire County Cricket Club

11. England cricket team
✗ 12. Marylebone Cricket Club
✗ 13. Sussex County Cricket Club
✗ 14. Kent County Cricket Club
✗ 15. Leicester
✗ 16. Aylestone Road
✗ 17. County Cricket Ground, Derby

...

Figure 6.1: Example prediction by EntQA taken from AIDA-A. Given a passage, the retriever
module ranks K candidate entities, then the reader module finds mentions of each entity or rejects
it (marked by ✗). Both modules use entity descriptions (not shown). In this example, it predicts the
span “England” for the 11th candidate England cricket team but rejects the 35th candidate
England (the country).

(K50) [146], N3-Reuters-128 (R128), N3-RSS-500 (R500) [147], and OKE challenge 2015 and

2016 (OKE15 and OKE16) [148]. We refer to Table 6 in [8] for the datasets’ statistics. For the

KB, we use the 2019 Wikipedia dump provided in the KILT benchmark [149], which contains 5.9

million entities.

Model details. We initialize the passage encoder encθP and the entity encoder encθE in the re-

triever module with independent BLINK retrievers pretrained on Wikipedia hyperlinks [67] and

optimize the NCE objective (6.1) with hard negative mining. We initialize the joint encoder encθH

in the reader module with ELECTRA-large [140] finetuned on SQuAD 2.0 [150] and optimize the

reader objective (6.2). We break up each document x ∈ X into overlapping passages of length

L = 32 with stride S = 16 under WordPiece tokenization. For each passage in x, we concatenate

the input with the first token of the document ψtopic(x) = x1, which corresponds to the topic in

AIDA but not in other datasets. We use 64 candidate entities in training for both the retriever and

the reader; we use 100 candidates at test time. We predict up to P = 3 mention spans for each can-

83

didate entity. We use γ = 0.05 as the threshold in all experiments, chosen after trying values 0.01,

0.1, and 0.05 on the validation set. Additional experiments on automatically tuning γ are discussed

in Appendix D.1. For optimization, we use Adam [96] with learning rate 2e-6 for the retriever and

1e-5 for the reader; we use a linear learning rate decay schedule with warmup proportion 0.06 over

4 epochs for both modules. The batch size is 4 for the retriever and 2 for the reader. The retriever

is trained on 4 GPUs (A100) for 9 hours; the reader is trained on 2 GPUs for 6 hours.

Baselines. We compare with state-of-the-art EL systems that represent a diverse array of ap-

proaches. [47] and [49] use the MD→ED pipeline; despite the limitation of pipelining MD with

ED, the latter achieve excellent performance by solving MD with a strong NER system [151]. [8]

use an end-to-end model that sequentially performs MD and ED; to make the problem tractable,

they drastically prune the search space with a mention-candidates dictionary and the model score.

[22] propose GENRE, a sequence-to-sequence model for EL. The model conditions on the given

document and autoregressively generates a labeled version of the document by at each position ei-

ther copying a token, starting or ending a mention span, or, if the previous generation was the end

of a mention m, generating the entity title associated with m token by token. At inference time,

GENRE critically relies on a prefix tree (aka. trie) derived from Wikipedia to constrain the beam

search so that it produces a valid entity title in the KB. Since each beam element must first predict

a mention before predicting an entity, unless the beam size is unbounded so that every labeled span

is considered, GENRE will suffer from MD errors propagating to ED.

6.3.2 Results

Table 6.1 shows the main results. EntQA achieves the best in-domain test F1 score for AIDA

(+2.1) and is also performant on out-of-domain datasets (+3.8 on KORE 50 and +7.4 on N3-

Reuters-128, close second-best on Derczynski and N3-RSS-500). The performance is lower on

OKE15 and OKE16 for the same reason pointed out by [22]: these datasets are annotated with

coreference (i.e., they contain pronouns and common nouns linked to entities) which our model is

84

Table 6.1: InKB Micro F1 on the in-domain and out-of-domain test sets on the GERBIL bench-
marking platform. For each dataset, bold indicates the best model and underline indicates the
second best.

In-domain Out-of-domain

Method AIDA MSNBC Der K50 R128 R500 OKE15 OKE16 Avg

Hoffart et al. [47] 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.0 47.2
Steinmetz and Sack [152] 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7
Moro et al. [153] 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2
Kolitsas et al. [8] 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
Broscheit [154] 79.3 - - - - - - -
Martins et al. [155] 81.9 - - - - - - -
Hulst et al. [49] 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
De Cao et al. [22] 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2

EntQA 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5

not trained for, while many other systems have a component in their pipelines to handle these cases.

We hypothesize that the performance on MSNBC is lagging because it has long documents (544

words per document on average) which are processed in relatively short passages under EntQA

due to our computational constraints. Overall, EntQA achieves the best macro-averaged F1 score

across the 8 evaluation datasets (+2.3).

The inference runtime of EntQA is clearly linear in the number of candidate entities K. To get

a sense of speed, we compared the runtime of EntQA with that of GENRE on the AIDA validation

set using 1 GPU on the same machine. GENRE took 1 hour and 10 minutes, excluding 31 minutes

to first build a prefix tree. EntQA took 20 minutes with K = 100, 10 minutes with K = 50, and 4

minutes with K = 20, excluding 1 hour to first index entity embeddings, yielding F1 scores 87.3,

87.4, and 87.0. Interestingly, we can obtain a significant speedup at a minor cost in performance

by decreasing K. We believe this can be a useful feature of the model in controlling the speed-

performance tradeoff.

We note that there is an issue of using different editions of Wikipedia between the systems. For

instance, [47] use the 2010 dump, [49] and we use the 2019 dump, whereas [8] and [22] use the

85

2014 dump (even though the latter use the 2019 dump for pretraining). Thus there is a concern that

differences in performance are due to different snapshots of Wikipedia. While we consider it out of

scope in our work to fully address this concern, we find that using different editions of Wikipedia

does not fundamentally change the performance of EntQA, which is consistent with GERBIL’s

intent of being KB-agnostic. For instance, we obtained the same validation F1 on AIDA with our

model trained on either the 2014 or 2019 dump. We use the KILT edition of Wikipedia mainly for

convenience.

6.3.2.1 Other Practical Highlights

No dictionary. EntQA has no dependence on a mention-candidates dictionary. All previous

works rely on a dictionary D : V+ → P(E) that maps a mention string m to a small set of

candidate entities e ∈ E associated with empirical conditional probabilities p̂e|m > 0 [47, inter

alia]. For instance, it is an essential component of the search procedure in the end-to-end model

of [8]. While not mentioned in the paper or on the GitHub repository, GENRE [22] also uses the

dictionary from [8] in their prefix tree to constrain the beam search (personal communication with

one of the authors of the paper). Constructing such a dictionary typically assumes the existence of

a large KB-specific labeled corpus (e.g., internal links in Wikipedia). EntQA is thus more broadly

applicable to KBs without such resources (e.g., for small domain-specific KBs).

No model-specific pretraining. EntQA does not require model-specific pretraining; it only uses

standard pretrained Transformers for initialization and is directly finetuned on AIDA. This is in

contrast with GENRE which requires industry-scale pretraining by weak supervision. Specifically,

GENRE is trained by finetuning BART [35] on autoregressive EL training examples constructed

from all Wikipedia abstract sections on 64 GPUs for 30 hours, followed by finetuning on AIDA.

Thus training GENRE from scratch is beyond the means of most academic researchers, making it

difficult to make substantial changes to the model. EntQA can be trained with academic resources

and outperforms GENRE.

86

6.3.3 Ablation Studies

The final form of EntQA in Section 6.3.2 is the result of empirically exploring various modeling

and optimization choices during development. We present an ablation study to illustrate the impact

of these choices.

Retriever Table 6.2 shows an ablation study for the retriever module. We report top-100 recall

(R@100) on the validation set of AIDA. The baseline retriever is initialized with BLINK [67], uses

the passage representation [CLS]p[SEP]x1, and is trained by optimizing the multi-label variant

of NCE (6.1) that considers one gold entity at a time by excluding others in the normalization term.

We see that the baseline retriever has an extremely high recall (98.2), confirming our hypothesis

that it is possible to accurately infer relevant entities in a passage without knowing where they are

mentioned. We also see that it is very important to use the proposed multi-label variant of NCE

instead of naive NCE that normalizes over all gold entities, which results in a massive decrease in

recall (82.7). We consider optimizing the marginal log-likelihood (i.e., the log of the sum of the

probabilities of gold entities, rather than the sum of the log), but it yields much worse performance

(83.8). It is helpful to initialize with BLINK rather than BERT-large, use hard negatives in NCE,

and append x1 to input passages. Table 6.2 additionally shows the BM25 recall, which is quite poor

(36.6). Upon inspection, we find that BM25 fails to retrieve diverse entities. For instance, a passage

on cricket may have diverse gold entities such as an organization (Leicestershire County

Cricket Club), location (London), and person (Phil Simmons), but the top entities under

BM25 are dominated by person entities (Alan Shipman, Dominique Lewis, etc.). This

shows the necessity of explicitly training a retriever to prioritize diversity in our problem.

Reader Table 6.3 shows an ablation study for the reader module. We report F1 on the vali-

dation set of AIDA. The baseline reader is initialized with ELECTRA-large [140] finetuned on

SQuAD 2.0, uses the joint passage-entity input representation [CLS]p ⊕ x1[SEP]ϕtitle(e) ⊕

ϕdesc(e)[SEP], and is trained by optimizing (6.2). Candidate entities are obtained from the base-

87

Table 6.2: Ablation study for the retriever module. Each line makes a single change from the
baseline retriever used in Table 6.1. We also compare with BM25.

Retriever Val R@100
Baseline 98.2
– Omit excluding other gold entities in the normalization term of NCE 82.7
– Train by optimizing the marginal log-likelihood 83.8
– Initialize with BERT-large 94.4
– Omit hard negatives in NCE (i.e., negative examples are all random) 94.4
– Omit the document-level information x1 in the passage representation 96.6
BM25 36.6

Table 6.3: Ablation study for the reader module. Each line makes a single change from the baseline
reader used in Table 6.1. Candidate entities are obtained from the baseline retriever in Table 6.2
(except the oracle experiment).

Reader Val F1

Baseline 87.3
– Initialize with BERT-large 85.6
– Train by optimizing the marginal log-likelihood 86.9
– Initialize with ELECTRA-large (not finetuned on SQuAD 2.0) 88.4
– Omit the reranking probabilities pθrerank (i.e., only use span probabilities) 87.9
– Omit the document-level information x1 in the input passage representation 87.5

Oracle experiment: use gold entities as the only candidate entities 94.9

line retriever in Table 6.2. We see that BERT is less performant than ELECTRA for reader initial-

ization, consistent with findings in the QA literature [156]. Training by optimizing the marginal

log-likelihood is comparable to (6.2). Interestingly, we find that we can fit the reader just as well

without using a SQuAD-finetuned ELECTRA, ranking probabilities, or x1 in passages. However,

in our preliminary investigation we found that these variants generalized slightly worse outside the

training domain, thus we kept our original choice. We discuss other choices of document-level

information in Appendix D.2. Lastly, we conduct an oracle experiment in which we provide only

gold entities as candidates to the reader. In this scenario, the reader is very accurate (94.9 F1), sug-

gesting that the main performance bottleneck is correctly distinguishing gold vs non-gold entities

88

Table 6.4: Categorizing errors on the validation set passages. The number of passages in each cat-
egory is given in parentheses. G refers to the gold annotation; P refers to the predicted annotation.

Error Examples (text snippets)
Over G: england fast bowler [martin mccague]Martin McCague (Fill in missing mentions)
(443) P: [england]England cricket team fast bowler [martin mccague]Martin McCague

G: duran, 45, takes on little - known [mexican]Mexico

P: [duran]Roberto Durán, 45, takes on little - known [mexican]Mexico

Under G: second innings before [simmons]Phil Simmons stepped in (Bad threshold)
(474) P: second innings before simmons stepped in

G: [ato boldon]Ato Boldon - lpr - [trinidad]Trinidad - rpr - 20.
P: [ato boldon]Ato Boldon - lpr - trinidad - rpr - 20.

Neither G: match against yorkshire at [headingley]Headingly (Ambiguous entity)
(378) P: match against yorkshire at [headingley]Headingly Stadium

G: at the [oval]The Oval, surrey captain chris lewis (Ambiguous span)
P: at [the oval]The Oval, surrey captain chris lewis
G: scores in [english]England county championship matches (Others)
P: scores in [english county championship]County Championship matches

from the candidates. We investigate this issue more in depth in the next section.

6.3.4 Error Analysis

To better understand the source of errors made by EntQA, we examine passages in the validation

set for which the model’s prediction is not completely correct. We partition them into three types:

(1) over-predicting (i.e., the gold mentions are a strict subset of the predicted mentions), (2) under-

predicting (i.e., the predicted mentions are a strict subset of the gold mentions), and (3) neither

over- nor under-predicting. Table 6.4 shows examples of each error type. We find that over-

predicting often happens because the model correctly “fills in” entity mentions missing in the gold

annotation. Under-predicting happens most likely because the threshold value is too large to catch

certain mentions. Finally, many errors that are neither over- nor under-predicting are largely due

to annotation noise. For instance, the predicted entity Headingly Stadium is a correct and

more specific entity for the span “headingley” than the gold entity Headingly (a suburb); the

predicted span “the oval” is more suitable, or at least as correct as, the gold span “oval” for the

89

entity The Oval.

We also consider distinguishing MD errors from ED errors on the validation set. EntQA obtains

87.5 overall F1. When we only measure the correctness of mention spans (equivalent to treating

all entity predictions as correct), we obtain 92.3 F1. When we only measure the correctness of

rejecting or accepting candidate entities, we obtain 64.5 F1 at the passage level and 89.3 F1 at the

document level (i.e., consider the set of candidates from all passages). The reader’s relatively low

passage-level F1 in rejecting or accepting candidates is consistent with the the oracle experiment in

Table 6.3. That is, the main performance bottleneck of EntQA is discriminating gold vs non-gold

entities from the candidates, though this should be taken with a grain of salt given the noise in

annotation illustrated in Table 6.4.

6.4 Related Work

Our work follows the recent trend of formulating language tasks as QA problems, but to our knowl-

edge we are the first to propose reduction to inverted open-domain QA. Most previous works sup-

ply questions as input to the system, along with passages in which answer spans are found. They

differ only in question formulation, for instance a predicate in semantic role labeling [157], a rela-

tion type along with its first argument in KB completion [158, 159], an entity category in (nested)

NER [160], an auxiliary verb or a wh-expression in ellipsis resolution [161], and other task-specific

questions [162]. In contrast, we solve question formulation as part of the problem by exploiting

recent advances in dense text retrieval.

A notable exception is CorefQA [163], from which we take direct inspiration. In this approach,

the authors formulate coreference resolution as QA in which questions are coreferring spans and

answers are the spans’ antecedents (i.e., earlier spans that belong to the same coreference cluster).

Since coreferring spans are unknown, the authors rely on the end-to-end coreference resolution

model of [9] that produces candidate spans by beam search. In contrast, EntQA handles varying

numbers of questions in a simpler framework of text retrieval.

As in this chapter, some previous works propose methods to handle varying numbers of answer

90

spans for a given question. But their methods are based on one-vs-all classification (i.e., each label

is associated with a token-level binary classifier) or reduction to tagging (i.e., spans are expressed

as a BIO-label sequence) [163, 159, 160]. We found these methods to be ineffective in preliminary

experiments, and instead develop a more effective inference scheme in which the model delays its

final prediction to the end for global reranking (Section 6.2.3).

We discuss pros and cons of EntQA vs other models in practice. While EntQA outperforms

GENRE without large-scale weakly supervised pretraining, it involves dense retrieval which incurs

a large memory footprint to store and index dense embeddings as pointed out by [22]. But it can

be done on a single machine with ample RAM (ours has 252G) which is cheap. Bypassing dense

retrieval is a unique strength of the autoregressive approach of GENRE and orthogonal to ours; we

leave combining their strengths as future work. Our model requires a threshold γ for inference,

but we find that it is easy to pick a good threshold; we also argue that it can be a useful feature in

a real-world setting in which the practitioner often needs a customized trade-off between precision

and recall. The threshold-based inference implies another unique feature of EntQA not explored

in this chapter: it can naturally handle nested entity mentions. We leave nested linking as future

work.

6.5 Conclusions

Existing methods for entity linking suffer from the dilemma of having to predict mentions with-

out knowing the corresponding entities. We have presented EntQA, a new model that solves this

dilemma by predicting entities first and then finding their mentions. Our approach is based on a

novel reduction to inverse open-domain QA in which we retrieve an unknown number of questions

(candidate entities) and predict potentially multiple answer spans (mentions) for each question.

Our solution is a simple pipeline that takes full advantage of progress in text retrieval and reading

comprehension. EntQA achieves new state-of-the-art results on the GERBIL benchmarking plat-

form without relying on a KB-specific mention-candidates dictionary or expensive model-specific

pretraining.

91

CHAPTER 7

SEQUENCE-TO-SEQUENCE COREFERENCE RESOLUTION

This chapter is adapted from joint work with Sam Wiseman and Karl Stratos entitled “ Seq2seq is

All You Need for Coreference Resolution” [164].

Existing works on coreference resolution suggest that task-specific models are necessary to

achieve state-of-the-art performance. In this chapter, we present compelling evidence that such

models are not necessary. We finetune a pretrained seq2seq transformer to map an input document

to a tagged sequence encoding the coreference annotation. Despite the extreme simplicity, our

model outperforms or closely matches the best coreference systems in the literature on an array of

datasets. We also propose an especially simple seq2seq approach that generates only tagged spans

rather than the spans interleaved with the original text. Our analysis shows that the model size, the

amount of supervision, and the choice of sequence representations are key factors in performance.

7.1 Introduction

The seminal work by Lee et al. [165] popularized end-to-end models for coreference resolution

based on searching over all possible spans and their clustering. However, even with substantial

refinement and simplification in followup works [50, 51, 163, 52], the models are highly task-

specific, involving many specialized hyperparameters such as how many candidates to retain in the

mention proposal phase.

There is a recent line of works that take an alternative approach, leveraging advances in pre-

trained sequence-to-sequence (seq2seq) models. Liu et al. [53] propose ASP, an autoregressive

pointer-based model with a multitasking head for bracket pairing and span labeling. Bohnet et al.

[54] propose a transition-based system with carefully designed states and actions, simulated by a

seq2seq model that processes one state at a time. However, these seq2seq-based models are still

task-specific, requiring a modification of the seq2seq architecture or a derivation of a transition-

92

based system with state manipulation.

A natural question is: are such task-specific models necessary for coreference resolution, or

can we approach it as a standard seq2seq problem? There have been previous efforts to reduce

coreference resolution as a seq2seq problem [55, 56], but they underperform task-specific models,

suggesting that task-specific models are perhaps necessary.

In this chapter, we present the first full seq2seq reduction of coreference resolution that matches

or outperforms the best coreference systems in the literature, demonstrating that task-specific mod-

els are not necessary to obtain state-of-the-art performance and questioning the need to develop

task-specific solutions. Our approach is extremely simple. We treat the raw document as a source

sequence and the coreference annotation as a target sequence, then finetune a pretrained encoder-

decoder model like T5 [166] or T0 [167] without any modification to the architecture.

There is a great deal of flexibility in the choice of target sequence representation. Our main

model represents the coreference annotation as a sequence of actions that either copy a token from

the source sequence, start/end a mention span, or tag a predicted mention span with an integer. At

test time, the model always produces a valid coreference clustering by constrained beam search.

We consider an even simpler version in which the model generates only the tagged spans, and find

that it also yields surprisingly high performance. This simpler version is advantageous because it

results in faster inference.

Our seq2seq model obtains strong results on an array of coreference datasets. On English

OntoNotes [168], with a 3B-parameter T0 the model obtains 82.9 test average F1, outperforming

the corresponding ASP [53] initialized from the same base model (82.3). With a 11B-parameter

T0, our model achieves 83.2 F1, outperforming CorefQA [163] (83.1) and getting close to the

best known result using a 13B-parameter model (83.3). On PreCo [169], the model achieves 88.5,

outperforming the task-specific model of Toshniwal et al. [170] (87.8). On LitBank [171], which

has substantially smaller training data, the model obtains 78.3 cross-validation F1 lagging behind

Toshniwal et al. [170] who report 79.2. But when trained on the union of LitBank, OntoNotes, and

PreCo, it obtains 81.2 split-0 F1, significantly outperforming their 78.2. Our analysis shows that the

93

model size, the amount of supervision, and the choice of sequence representations are key factors

in performance. We make our code publicly available at: https://github.com/WenzhengZhang/

Seq2seqCoref.

7.2 Related Work

In this section, we give a more focused treatment of previous works on seq2seq-style approaches

to coreference resolution to make our contributions more clear. Urbizu et al. [55] propose framing

coreference resolution as a seq2seq task, but their work is a proof of concept. They naively predict

boundaries, cluster numbers, and blanks (e.g., “(0 – – 0) – (1 – (2) — 1)”) with suboptimal model-

ing choices (e.g., their decoder only receives these symbols and no document content). They only

report results on the ARRAU corpus and significantly fall behind existing works (e.g., 66.5 vs 78.8

under B3). In contrast, we solve a much more challenging problem of developing state-of-the-art

seq2seq coreference systems.

There are recent works approaching structured prediction with a general seq2seq-style solu-

tion. One example is TANL [56], which frames entity/relation extraction, semantic role labeling,

and coreference resolution as seq2seq tasks. Again, TANL fails to demonstrate competitive perfor-

mance on standard coreference resolution datasets, obtaining only 72.8 average F1 on OntoNotes

(compared to the current state-of-the-art performance level which is > 80). Their target sequence

representation corresponds to our full linearization with token action except that they tag the cluster

information by preceding mention strings (e.g., “[his — Barack Obama]”), which yields long tar-

get sequences and introduces clustering ambiguity. While we improve the performance of TANL

to 79.6 in our own implementation, achieving the best performance (83.2) requires our sequence

definitions (Section 7.3).

ASP [53] is an autoregressive pointer-based model for structured prediction. It is a modified

transformer that at step t conditions on the input document x and a sequence representation of the

annotation so far z≤t and predicts a tuple of model-specific actions (αt, βt, γt) used for structure

building. For instance, βt ∈ {0 . . . t− 1} is a bracket pairing action parameterized with a feedfor-

https://github.com/WenzhengZhang/Seq2seqCoref
https://github.com/WenzhengZhang/Seq2seqCoref

94

ward layer that consumes the previous hidden states (ht, hβt) (i.e., a pointer network). ASP obtains

state-of-the-art results on OntoNotes (up to 82.5 average F1). We outperform ASP with a standard

transformer.

Bohnet et al. [54] develop a transition-based coreference system that can be implemented by a

seq2seq model. The system autoregressively maps a state to a prediction, where a state is previous

coreference-annotated sentences along with the next sentence and a prediction is system actions

(e.g., link and append). While the system can be reduced to seq2seq predictions, it processes

one sentence at a time by applying the predicted actions to the current state. We show that such

an explicit state-by-state transition is not necessary, and that a standard transformer can directly

reason with all coreference clusters simultaneously.

7.3 Seq2Seq Methods

Let V denote the vocabulary. For any sequence a ∈ VT and position t ∈ {1 . . . T}, we use the

prefix notation a<t = (a1 . . . at−1) ∈ V t−1 and a≤t = (a1 . . . at) ∈ V t. We assume a generalized

seq2seq setting in which x ∈ VT ′ is the source sequence, y ∈ VT is the target sequence (i.e.,

a sequence of labels), and z ∈ VT is an additional sequence fed to the seq2seq decoder where

zt = F (x, z<t, y<t) is some fixed deterministic mapping. The “generalized” model uses parameters

θ to define the conditional distribution

pθ(y|x) =
T∏
t=1

pθ(yt|x, z≤t). (7.1)

We emphasize that the generalization above does not modify the standard seq2seq framework.

During training, we feed (x, z) to the model as the usual source-target sequence pair and minimize

the cross-entropy loss using y as per-token labels. At test time, we apply the mapping F at each

step by postprocessing predictions.

All our methods use (7.1) and only change the variable definitions. The encoder input x is

always the document to be processed. The decoder input z is a sequence representation or “lin-

95

earization” of the coreference annotation of x. The decoder output y is any action sequence from

which z can be extracted deterministically at each step.

7.3.1 Linearization of the Coreference Annotation

For a document x ∈ VT ′ , the coreference annotation S is a set of spans clustered into C groups

formalized as

S ⊂ {(i, j, l) : 1 ≤ i ≤ j ≤ T ′, 1 ≤ l ≤ C}

Note that the spans can be nested. We assume that the spans are ordered in non-decreasing lengths.

We will use the following as a running example:

x = (a, b, c, d, e)

S = {(2, 2, 1), (5, 5, 2), (2, 3, 2)} (7.2)

(i.e., the clustered spans are {{b} , {(b, c), e}}). The goal is to express S as a sequence z ∈ VT

for some length T . A minimal formulation is to literally predict the integer triples, for instance

z = str(S) where str is the string conversion in Python. However, while short, such a non-

linguistic representation was found to perform poorly likely because it is not compatible with

language model pretraining.

A better approach is to predict the mentions. We represent the tagged span (i, j, l) in document

x as

<m> xi . . . xj | l </m>

where <m>,</m> ∈ V are special symbols indicating the start and end of a mention representation,

and | ∈ V indicates the end of a mention string. Nested spans are handled naturally by linearizing

the spans in order (i.e., from the shortest to the longest). For instance, the subsequence (b, c) ∈ V2

96

in the running example (7.2) will become the length-10 sequence

<m> <m> b | 1 </m> c | 2 </m>

In contrast to a transition-based approach [54], we decode all coreference clusters in the document

in a single pass. Thus there is an issue of alignment: if the model predicts multiple mentions with

the same string form, how do we know the corresponding spans in the source sequence? A simple

solution popular in general seq2seq approaches to tagging is to exhaustively predict all the tokens

in x [172, 22]. The example (7.2) is then linearized as

a <m> <m> b | 1 </m> c | 2 </m> d <m> e | 2 </m>

We call this representation full linearization. Full linearization completely eliminates the problem

of alignment ambiguity at the cost of longer target sequences. We also consider an alternative

shorter representation that we call partial linearization in which only the tagged mentions are

encoded. In this case, (7.2) is linearized as

<m> <m> b | 1 </m> c | 2 </m> <m> e | 2 </m>

Partial linearization has the potential to drastically shorten the target length if the mentions are

sparse, but it requires an explicit alignment step to transfer the predictions to the input document.

We defer the discussion of the alignment problem to Section 7.3.4.

7.3.2 Action Sequences

Given a choice of linearization z ∈ VT (i.e., input to the decoder), we can choose any action

sequence y ∈ VT (i.e., the actual predictions by the decoder) such that at each step t, we can

extract zt from the document x and the past information z<t and y<t. We assume that z1 = <s>

and zT+1 = </s> are the standard start and end symbols for the target sequence. A straightforward

97

action sequence is given by yt = zt+1 for t = 1 . . . T which we call token action. Token action

corresponds to a common language modeling setting where the per-step prediction is simply the

next token. For instance, the annotation x = (a, b) and S = {(2, 2, 1)} under full linearization and

token action is assigned

y = (a,<m>, b, |, 1,</m>,</s>)

z = (<s>, a,<m>, b, |, 1,</m>,</s>) (7.3)

Under full linearization, we can use a smaller action space A = {<c>,<m>,</m>, |,</s>} ∪ U

where <c> is the special “copy” symbol which means copying a single token from the document

and advancing the index by one, and U ⊂ V is the subset of the vocabulary used for encoding

integers. We call this choice copy action, formally defined as

yt =


<c> if zt+1 ̸∈ {<m>,</m>, |,</s>} ∪ U

zt+1 otherwise

The example (7.3) under copy action becomes

y = (<c>,<m>,<c>, |, 1,</m>,</s>)

z = (<s>, a,<m>, b, |, 1,</m>,</s>)

Copy action in conjunction with constrained beam search is a natural way to prevent deviations

between the source and target sequences [172]. Partial linearization is not compatible with copy

action since the model skips the gap between mentions.

7.3.3 Integer-Free Representation

So far we have relied on the separation symbol | and an integer l to label every mention with its

cluster identity. Because the number of mentions in a document is quite large, we consider ways to

98

avoid these two symbols. One way is to hard-code the cluster information directly in the mention

boundaries by introducing a special symbol </ml> ∈ V for each cluster number l = 1, . . . , C.

Under this scheme, we may assign to the annotation x = (a, b) and S = {(1, 1, 1)(2, 2, 1)}:

y = (<m>,<c>,</m1>,<m>,<c>,</m1>,</s>)

z = (<s>,<m>, a,</m1>,<m>, b,</m1>,</s>) (7.4)

The performance of this representation was found to be surprisingly poor, likely because the model

has a hard time learning to predict so many new symbols. We tackle this issue by introducing a

“new” action <new> that delegates the burden of specifying an unseen cluster number to postpro-

cessing. The example (7.4) is now assigned the action sequence

y = (<m>,<c>,<new>,<m>,<c>,</m1>,</s>)

z = (<s>,<m>, a,</m1>,<m>, b,</m1>,</s>)

In this way, whenever the model predicts <new> we can feed </ml+1> as the decoder input where

l is the previous number of clusters. The model is only responsible for predicting </ml> for

expanding a known cluster l. We call this integer-free representation and show that it is nearly as

performant as a corresponding baseline that relies on | and l while being shorter and notationally

cleaner.

7.3.4 Mention Alignment

The issue of alignment arises only under partial linearization and token action. In this case, it

is possible to have linearized mentions whose corresponding locations in the input document are

ambiguous. Consider the document x = (a, b, c, d, e, b, b). The linearization consisting of two

99

length-1 mentions

<m> b | 1 </m> <m> b | 1 </m> (7.5)

correspond to either S = {(2, 2, 1), (6, 6, 1)} or S = {(6, 6, 1), (7, 7, 1)}. We align mentions

by aligning tokens with gaps (i.e., a token may be aligned to nothing). Prior to aligning tokens,

we remove all special symbols while saving the span information for each mention (omitting the

cluster information for simplicity). For instance, (7.5) becomes (b, b) with spans (1, 1) and (2, 2).

We then find a highest-scoring alignment where the score measures token matching (1 if

matched, −1 if mismatched) and length-n affine gap penalty g(n) = −1 − p(n − 1), where p

is a hyperparameter1. The affine gap penalty encourages long unsegmented gaps, capturing the in-

tuition that mentions tend to appear in high density. The above example has the optimal alignment

with 2 matches (6↔ 1 and 7↔ 2) and a length-5 gap in the source sequence (1 . . . 5). Plugging in

the token matches in the span information, we identify the locations (6, 6) and (7, 7) corresponding

to the second annotation. This approach naturally handles nested mentions.

For a document of length T ′ and a partial linearization (with special symbols removed) of

length K, there are
(
T ′+K
K

)
possible alignments with gaps. We exactly find an optimal alignment

in O(T ′K) time by Gotoh’s algorithm [173]. An oracle experiment shows that our approach is

highly effective, reaching 98.0 average F1 on OntoNotes if we use the gold partial linearization.

We further improve the alignment scheme by inserting sentence markers in the input document and

linearization, which allows us to constrain the alignment to sentence pairs at test time.

7.4 Discussion

Having presented our technical approach, we discuss how it relates to other approaches to corefer-

ence resolution that also use sequence-based models.

Our approach is pure seq2seq because we use both the standard architecture and the system de-

1In our experiment, we set p = 0 for simplicity, as we observed negligible performance differences when p ≤
0.0001.

100

sign that is applicable to any seq2seq task, such as machine translation and text summarization. In

contrast, the approach of Bohnet et al. [54] is not considered pure seq2seq because their transition-

based system is specifically designed for the coreference task (e.g., their “Link” and “Append”

actions are meant to cluster mentions together), even though the system itself is implemented us-

ing the standard seq2seq architecture. To understand the practical difference, note that their system

requiresM encoder forward passes for a single document during inference whereM is the number

of sentences, whereas ours requires one. The success of the transition system of Bohnet et al. [54]

does not imply the success of the general seq2seq system in our work.

We adopt the generalized seq2seq framework that may require postprocessing during genera-

tion (e.g., for copy action) for improved modeling flexibility and performance, but the postprocess-

ing step does not change the standard seq2seq architecture and system design. Furthermore, our

model without postprocessing is nearly as effective. Specifically, our “Full linear + token action +

T03B” model in Table 7.2 is a standard seq2seq model with no postprocessing during inference but

achieves an 82.4 test F1 score, which is competitive with our best same-size “Full linear + copy

action + T03B” model that does require token-level postprocessing (82.9).

We use constrained decoding during generation to ensure valid coreference annotation, which

is a standard practice [172, 22]. The details can be found in Appendix E.1.

7.5 Experiments

7.5.1 Datasets

We train and evaluate on three widely used datasets for coreference resolution: OntoNotes [168],

PreCo [169] and LitBank [171]. The data statistics are summarized in Table 7.1. It is important to

note that these datasets exhibit significant variations in terms of size, document length, number of

mentions/clusters, and domain. Following Kirstain et al. [52], we incorporate the speaker’s name

into the text whenever there is a change in speakers for datasets that include speaker metadata. In

addition to training and evaluating on these three datasets individually, we also perform an addi-

tional experiment involving joint training on the combined dataset comprising all three datasets.

101

Docs
Dataset Train Dev Test Words Mentions Cluster Size

OntoNotes 2802 343 348 467 56 4.4
LitBank 80 10 10 2105 291 3.7
PreCo 36120 500 500 337 105 1.6

Table 7.1: Data statistics for OntoNotes, LitBank, and PreCo datasets. The number of documents
in each split, average word count per document, average mention count per document, and average
mention count per cluster are listed.

To address the issue of data magnitude imbalance in joint training, we adopt the methodology sug-

gested by Toshniwal et al. [170] and downsample the OntoNotes and PreCo datasets to 2K samples

per epoch.

7.5.2 Implementation Details

We initialize our model using the T5 model family [166], which includes models of various sizes.

Specifically, we use T5 [166], T0 [167], and FLAN-T5 [174] with model sizes base, large, XL/3B,

and XXL/pp. We use the pretrained models available in the Hugging Face Transformers library

[175].

To train large models with limited resources, we use Deepspeed [176] with ZeRO optimizers

[177] and enable gradient checkpointing. We divide the document into overlapped segments, each

with a maximum length of 2048 tokens and an overlapping length of 1024 tokens. During infer-

ence, the maximum input length is 4096 tokens for all our experiments. We use constrained beam

search with beam size 4.

For optimization, we use the Adam optimizer [96] with the learning rate of 5e-4 for base/large

models, 5e-5 for XL/3B, and 3e-5 for XXL/pp models. We use a linear learning rate decay sched-

uler with a warmup proportion of 0.1. We train our models using a batch size of 1 per GPU, using

8 A100 40G GPUs for models of size up to 3B and 8 A100 80G GPUs for models of size 11B.

7.5.3 Baselines

We categorize the baselines into the following three groups.

102

MUC B3 CEAFϕ4 Avg.

Model P R F1 P R F1 P R F1 F1

Non-Seq2seq

Lee et al. [165] 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Lee et al. [50] 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
Joshi et al. [178] 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
Yu et al. [179] 82.7 83.3 83.0 73.8 75.6 74.7 72.2 71.0 71.6 76.4
Joshi et al. [180] 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Xia et al. [181] 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
Toshniwal et al. [182] 85.5 85.1 85.3 78.7 77.3 78.0 74.2 76.5 75.3 79.6
Wu et al. [163]∗ 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1
Xu and Choi [51] 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2
Kirstain et al. [52] 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
Dobrovolskii [183] 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
Toshniwal et al. [170] - - - - - - - - - 79.6
Liu et al. [53] + T03B 85.8 88.3 86.9 79.6 83.3 81.5 78.3 78.5 78.4 82.3
Liu et al. [53] + FLAN-T5XXL 86.1 88.4 87.2 80.2 83.2 81.7 78.9 78.3 78.6 82.5

Transition Seq2seq Bohnet et al. [54] + mT5XXL 87.4 88.3 87.8 81.8 83.4 82.6 79.1 79.9 79.5 83.3

Seq2seq

Paolini et al. [56]+T5base - - 81.0 - - 69.0 - - 68.4 72.8
Paolini et al. [56]+T0†3B 85.0 86.0 85.2 76.1 78.5 77.3 76.5 75.6 76.0 79.6
Partial linear + T03B 83.9 87.6 85.7 76.6 82.1 79.3 77.7 76.5 77.1 80.7
Integer free + T03B 84.9 88.8 86.8 78.9 84.0 81.4 78.1 79.3 78.7 82.3
Full inear + token action + T03B 85.9 88.6 87.2 79.6 83.5 81.5 78.9 78.0 78.5 82.4
Full linear + copy action + T03B 85.8 89.0 87.4 80.0 84.3 82.1 79.1 79.4 79.3 82.9
Full linear + copy action + T0pp 86.1 89.2 87.6 80.6 84.3 82.4 78.9 80.1 79.5 83.2

Table 7.2: Results on the OntoNotes (CoNLL-12 English) test set. The average CoNLL F1 score
of MUC, B3 and CEAFϕ4 is the main evaluation criterion. Models marked with † are our imple-
mentation. ∗ marks models using additional training data.

Non-seq2seq Models in this category are specifically designed for coreference resolution and

employ sophisticated coreference-specific architectures. Most models in this category follow the

approach introduced by Lee et al. [165] to detect mention spans in the input text and establish

antecedent relationships by computing span representation similarity at either span level [165, 50,

178, 180, 51, 53] or word level [52, 183]. In contrast, Wu et al. [163] use a QA model to predict

coreferent mention boundaries, while Xia et al. [181], Toshniwal et al. [182], and Toshniwal et al.

[170] use memory augmented models.

Transition-based Seq2seq Models in this category are based on a designed transition system.

Currently Bohnet et al. [54] is the only model in this category.

103

Seq2seq Models in this category leverage a sequence-to-sequence architecture to predict lin-

earized coreference annotations without relying on coreference-specific model architectures or

specialized system designs. Existing models in this category include Urbizu et al. [55] and Paolini

et al. [56]. However, Urbizu et al. [55] do not evaluate on standard coreference resolution datasets

like OntoNotes, and their performance is not competitive enough, so we do not compare with them.

On the other hand, Paolini et al. [56] do not report performance using larger T5 models, and their

input length is shorter than ours (1024 words). To ensure a fairer comparison, we implement their

method and include the results by training and evaluating with a larger model (T03B) using the

same input length as ours (2048 tokens). All of our models fall into this category. We include

both full linearization models and partial linearization models as baselines. For full linearization

models, we consider variants that use token action sequence and copy action sequence.

7.5.4 Results

7.5.4.1 English OntoNotes

Table 7.2 shows our main results on the test portion of English OntoNotes. We first point out

that it is generally challenging to ensure full comparability due to numerous ways the approaches

differ. For instance, CorefQA [163] achieves strong performance with a relatively small model

(SpanBERT-large, 340M parameters), but it uses additional training data to optimize the mention

proposal network (without which the performance drops to 75.9) and is slow at test time because

it runs an extractive reader on each mention. On the other hand, the best results obtained with

ASP [53] and the transition-based system [54] rely on much larger models (FLAN-T5XXL, 11B

parameters; mT5XXL, 13B parameters), where running such large models is not always feasible

depending on the authors’ available computational resources (e.g., we do not have the resources to

scale to 13B parameters). We do our best to interpret the results as objectively as possible2.

The first observation is that models based on a sizeable T5 outperform those that are not (with

2While the model sizes are similar, the comparison with Bohnet et al. [54] is not fully equivalent due to their focus
on multilingual coreference using the mT5 model.

104

Model PreCo LitBank LitBank0

Xia and Van Durme [184] 88.0 76.7∗ -
Thirukovalluru et al. [185] - 78.4 -
Wu and Gardner [186] 85.0 - -
Toshniwal et al. [182] - 76.5 -
Toshniwal et al. [170] 87.8 79.3 77.2
Toshniwal et al. [170]+Joint 87.6 - 78.2
Our copy action + T03B 88.5 78.3 77.3
Our copy action + T03B + Joint 88.3 - 81.2

Table 7.3: Results on Preco, Litbank test set. The average CoNLL F1 score of MUC, B3 and
CEAFϕ4 is the evaluation metric. We report both the 10-fold cross-validation results (official set-
ting) and the results of split 0 (LitBank0) following Toshniwal et al. [170]. Joint denotes training
on the union of OntoNotes, PreCo and LitBank0. * marks transfer learning results which uses
additional pretraining.

the exception of CorefQA which uses additional training data). Focusing on models with 3B pa-

rameters and input length 2048, our T0-based seq2seq model with full linearization and copy action

achieves an average F1 score of 82.9, outperforming ASP (82.3) and TANL (79.6) using the same

base model and input length. In fact, our 3B-model outperforms ASP using a 11B model (82.5).

While full linearization with copy action is the most performant, full linearization with token action

(which requires no postprocessing during generation) is almost as competitive (82.4). Partial lin-

earization with token action using the alignment method in Section 7.3.4 also obtains a nontrivial

F1 of 80.7, outperforming most non-seq2seq baselines. In terms of performance and speed, partial

linearization demonstrates lower accuracy but faster inference compared to full linearization. On

the English OntoNotes development data, the inference time for partial linearization is about 22

minutes, whereas full linearization takes approximately 40 minutes for both token action and copy

action sequences.

With the 11B-parameter T0pp initialization, our model reaches 83.2 F1, better than CorefQA

and close to 83.3 obtained by 13B-parameter transition-based system. While we do not have the

computational budget to train a 13B-parameter model, as a point of comparison, Bohnet et al. [54]

report the dev average F1 of 78.0 using a 3.7B-parameter mT5XL; our model using the same base

model with full linearization and copy action obtains 79.6.

105

7.5.4.2 PreCo and LitBank

We further verify the effectiveness of our seq2seq model by taking the same 3B-parameter T0

setting (full linearization, copy action) for OntoNotes to additional datasets in Table 7.3. We

consider PreCo [169] and LitBank [171] following the same experimental setup in Toshniwal et al.

[170]. On PreCo, which provides the largest training dataset (36K documents, compared to 2.8K

in OntoNotes), our model outperforms all previous works at an average F1 score of 88.5.

LitBank, on the other hand, is a very small dataset with only 100 annotated documents split into

80-10-10 for training, validation, and test. Its official evaluation metric is an average over 10-fold

cross-validation results; we also report results on split 0 to compare with prior work. Despite the

small training data, our model achieves competitive results of 77.3 on split 0 and 78.3 on cross-

validation, though lagging behind the task-specific model of Toshniwal et al. [170]. When the

model is trained on the union of OntoNotes, Preco and LitBank split 0 training portion, the model

achieves a significantly better performance of 81.2, beating 78.2 in the previous work. This shows

that (1) when there is sufficient training data, our seq2seq model can easily obtain state-of-the-art

results, and (2) even when that is not the case, the performance is still relatively strong and can be

easily improved by including other available datasets.

7.5.5 Ablation Studies

In this section, we conduct ablation studies to investigate different aspects related to sequence

representations, decoder input choices, and pretrained models of varying sizes. Unless specified,

all the ablation experiments are conducted using the T03B model.

7.5.5.1 Action Sequence

To analyze the impact of sequence representation, we present the results of an ablation study in

Table 7.4.

106

Sequence Representation Avg. F1

full linear

Baseline 82.6
– Copy action + integer free 82.6
– Copy action + put integer before 82.3
– Token action + integer 82.5
– Token action + antecedent string 79.5

partial linear
Baseline 81.1
– w/o sentence marker 79.9
– Oracle align 99.2
– Oracle align w/o sentence marker 98.0

Table 7.4: Ablation study for sequence representations on OntoNotes development set. Average
CoNLL F1 is reported.

Full Linearization The baseline for full linearization utilizes copy action sequence and repre-

sents cluster identity using integers. In Section 7.3.3, we introduce an integer-free representa-

tion which achieves performance comparable to the baseline (both achieving 82.6). Although the

integer-free representation is more complex in design, it offers a cleaner and shorter sequence rep-

resentation. Notably, placing the integer before the mention string leads to a noticeable drop in

performance (82.3 vs 82.6), emphasizing the importance of predicting cluster identity after detect-

ing mentions due to the autoregressive nature of the seq2seq model. Additionally, replacing the

copy action in the baseline with a token action results in slightly worse performance (82.5 vs 82.6),

indicating that a smaller action space is beneficial. Moreover, using the antecedent mention string

to link coreferent mentions (similar to TANL [56]) significantly decreases performance (79.5 vs

82.6). This demonstrates the superiority of using integers to represent cluster identity over using

antecedent mention strings for linking coreferent mentions.

Partial Linearization Partial linearization is incompatible with the copy action since the model

skips the gap between mentions. For partial linearization, the baseline employs a token action

sequence with explicit sentence markers. Sentence markers prove to be useful for the model,

allowing it to focus on each sentence individually during generation and aiding in alignment. Re-

moving sentence markers leads to a significant deterioration in performance (79.9 vs 81.1). To

107

Decoder Input Avg. F1
Baseline 82.6
– Copy action sequence 56.4
– Token sequence + copy action sequence 82.5

Table 7.5: Ablation study for decoder input on OntoNotes development set. Average CoNLL F1 is
reported.

further understand the benefits of sentence markers for alignment, we conduct oracle experiments

using gold linearization with and without sentence markers, obtaining average F1 scores of 99.2

and 98.0, respectively. These results validate the effectiveness of sentence markers in alignment.

7.5.5.2 Decoder Input

We present an ablation study for decoder input in Table 7.5. The baseline uses a linearized token

sequence as the decoder input. Replacing the token sequence with a copy action sequence (similar

to Urbizu et al. [55]) yields significantly worse performance compared to the baseline (56.4 vs

82.6). Averaging token and action embeddings as the input embedding is also less effective than

the baseline (82.5 vs 82.6). These results emphasize the importance of providing the decoder with

a linearized token sequence.

7.5.5.3 Pretrained Model

Table 7.6 shows an ablation study for pretrained model. We observe an improvement in perfor-

mance as the model size increases. For models of the same size, both FLAN-T5 and T0 surpass

the performance of the original T5 model. T0 achieves better performance than FLAN-T5 when

compared at the same size.

7.5.6 Error Analysis

To better understand the model behavior, we conduct error analysis on the dev set in Table 7.7.

The experiments are based on the T03B copy action model. The unlabeled mention detection F1

is 89.2. On the other hand, the clustering performance reaches 95.8 average F1 when restricted to

108

Pretrained Model # params Avg. F1
T5base 220M 76.2
T5large 770M 77.2
T53B 3B 81.6
FLAN-T5XL 3B 82.5
T03B 3B 82.6
FLAN-T5XXL 11B 82.9
T0pp 11B 83.0

Table 7.6: Ablation study for pretrained model on OntoNotes development set. Average CoNLL
F1 is reported.

F1
Mention detection 89.2
Detected mention clustering 95.8
Oracle mention clustering 94.8

Table 7.7: Error analysis on OntoNotes development set. We report mention detection F1 and
mention clustering average CoNLL F1.

correctly recovered mentions, and 94.8 when we assume perfect mention detection. This shows

that mention detection is the performance bottleneck; once correct mentions are obtained, the

model can accurately infer coreference clusters. Upon qualitative analysis of randomly sampled

gold clusters and their best matches, we find that a major source of error is annotation mistakes.

For instance, one gold annotation dictates “you do not want to [face]17 the dilemma. But [it]17 can

not be avoided” while our model correctly predicts “you do not want to face [the dilemma]20. But

[it]20 can not be avoided”; another gold annotation dictates “[[William]9 and she]10 saw each

other, it was such a wonderful reunion for [them]10 to just hug, and he would hug [her]2 and look

at [her]2 ” while our model predicts “[[William]11 and [she]2]12 saw each other, it was such a

wonderful reunion for [them]12 to just hug, and [he]11 would hug [her]2 and look at [her]2”.

7.6 Conclusions

We have presented a highly performant seq2seq reduction of coreference resolution. Unlike in pre-

vious works that rely on task-specific approaches to obtain strong performance, we use a standard

encoder-decoder model that receives the document as an input sequence and predicts a sequence

109

representation of its coreference annotation as the target sequence. Contrary to previously reported

weak results using seq2seq reductions, we show for the first time that with suitable definitions

of the sequence representation of the task, it is possible to achieve state-of-the-art performance,

reaching 83.2 test average F1 on English OntoNotes with an 11B-parameter T0pp initialization.

Our model’s strong results fundamentally challenge the default task-specific approach to corefer-

ence resolution.

CHAPTER 8

CONCLUSIONS

8.1 Summary

In this thesis, we explored two key capabilities that enable modern NLP systems to better access

external knowledge and reason about real-world entities: knowledge-intensive language processing

and entity-centric language understanding.

Chapter 2 provides the necessary background for these two directions. We begin with a formal

definition of information retrieval (IR), reviewing approaches ranging from classical term-based

methods to neural models, including dense and generative retrieval. We discuss the strengths and

limitations of each, motivating our focus on dense retrieval for its efficiency, scalability, flexibil-

ity, and generalizability. We introduce the widely adopted Noise Contrastive Estimation (NCE)

objective for training dense retrievers and present commonly used evaluation metrics. We then

cover retrieval-augmented generation (RAG), an end-to-end framework for addressing knowledge-

intensive tasks. We formalize the RAG problem and review training paradigms, including pipeline

training, joint training, and generator-guided retriever optimization. Evaluation metrics tailored

to RAG benchmarks are also discussed. Next, we introduce the foundations of entity-centric lan-

guage understanding. We present the formal problem formulation and major modeling approaches

for entity linking, followed by a similar treatment of coreference resolution, covering representative

methods and evaluation practices. This chapter lays the groundwork for the thesis’s contributions

to retrieval-based and entity-aware modeling.

In Chapter 3, we provide a theoretical analysis of the role of hard negatives in NCE training.

We formalize how hard negatives influence the bias of the NCE gradient relative to the ideal full

softmax (cross-entropy) gradient and show that hard negatives can effectively reduce this bias. Our

theoretical findings are supported by empirical results. By jointly optimizing both the selection of

110

111

hard negatives and the retriever architecture, we achieve new state-of-the-art performance on the

challenging Zeshel dataset [66].

In Chapter 4, we introduce a multitask learning framework for training retrieval models across

diverse tasks. While multitask retrieval offers practical advantages, it often underperforms com-

pared to task-specific models. We demonstrate that encouraging task specialization within a mul-

titask framework can substantially close this gap. Our approach combines task-specific prompting

on a multitask-pretrained model with an adaptive learning strategy guided by per-parameter task

sensitivity. This method leads to strong performance on the KILT retrieval benchmark.

In Chapter 5, we introduce ImpRAG, a query-free retrieval-augmented generation (RAG) sys-

tem that captures information needs implicitly, without relying on human-specified queries. We

unify retrieval and generation within a single decoder-only language model by partitioning its lay-

ers into specialized groups and jointly optimizing both components. By sharing the same model

parameters and forward pass across retrieval and generation, ImpRAG minimizes the retriever-

generator mismatch common in traditional RAG systems. ImpRAG achieves strong performance

across eight knowledge-intensive tasks, outperforming standard RAG baselines and demonstrating

robust generalization to unseen tasks with diverse formats.

In Chapter 6, we propose EntQA, a new approach to entity linking that reframes the problem as

an inverse open-domain question answering task. This design addresses the challenge of predicting

mentions without knowing the corresponding entities. EntQA first retrieves a variable number of

candidate entities using a multi-label retriever trained with our novel multi-label NCE objective,

then predicts potentially multiple mentions for each retrieved entity. Our simple yet effective

pipeline leverages recent advances in dense retrieval and reading comprehension. EntQA achieves

new state-of-the-art results on the GERBIL entity linking benchmark, without relying on KB-

specific mention dictionaries or model-specific pretraining.

In Chapter 7, we present a highly effective yet remarkably simple sequence-to-sequence for-

mulation of coreference resolution. In contrast to prior work that relies on specialized architectures

and extensive hyperparameter tuning, we use a standard encoder-decoder model that takes the doc-

112

ument as input and outputs a sequence encoding its coreference structure. We demonstrate, for

the first time, that with an appropriate design of the output representation, such a straightforward

approach can match or exceed the performance of task-specific models on standard coreference

resolution benchmarks.

8.2 Future Directions

This thesis opens several promising directions for future research:

Improving Evaluation for Knowledge-Intensive Language Processing. In this thesis, we pri-

marily adopted the widely used KILT benchmark [6] and simple string-matching metrics for evalu-

ation. However, with the rapid progress of large language models, existing short-form benchmarks

are becoming insufficient to reflect real-world reasoning and knowledge integration capabilities.

Moreover, exact-match-based metrics are increasingly unreliable, particularly in settings where

multiple correct answers exist or where semantic correctness matters more than surface form [187].

Future work should focus on (1) constructing larger and more realistic benchmarks that better re-

flect real-world use cases and (2) developing robust, semantically grounded evaluation metrics that

provide a more accurate measure of model performance in knowledge-intensive tasks.

Adaptive Retrieval-Augmented Generation. In this thesis, we primarily focused on knowledge-

intensive tasks where retrieval is triggered only once given a query or instruction. However, in

real-world scenarios, retrieval and generation are often interleaved, and retrieval may need to be

triggered multiple times adaptively. Prior work has explored dynamic retrieval using supervised

fine-tuning on LLM-generated trajectories [44] or reinforcement learning [45]. While these meth-

ods achieve performance gains, they are typically trained and evaluated in highly synthetic set-

tings [126, 188]. Moreover, supervised fine-tuning relies heavily on strong LLMs to produce high-

quality trajectories, which often amounts to distillation rather than true capability enhancement.

Similarly, RL-based approaches primarily demonstrate gains compared to prompting-only or ba-

sic SFT baselines, making it unclear whether genuine adaptive retrieval capabilities are learned.

113

Future work should (1) evaluate adaptive RAG under more realistic and diverse settings beyond

simple benchmarks like Yang et al. [126], (2) reduce dependence on LLM distillation, and (3)

compare against strong RAG instruction-tuned baselines (e.g., RA-IT from Chapter 5) to obtain

trustworthy and meaningful conclusions. Building on these insights, research can focus on devel-

oping principled methods to improve adaptive retrieval-augmented generation.

Latent Retrieval-Augmented Generation. In Chapter 5, we demonstrated that LLMs can per-

form latent retrieval by leveraging their hidden states for document retrieval. However, our current

approach still integrates the full retrieved texts into the generation process, which remains compu-

tationally expensive in both speed and memory. A promising future direction is to explore fully

latent RAG, where both retrieval and the integration of retrieved information occur entirely in the

embedding space. Such an approach could (1) improve efficiency by reducing the reliance on raw

document text, (2) achieve better alignment between retrieval and generation through a shared la-

tent space, and (3) naturally enable multi-modal retrieval-augmented generation, since embeddings

from different modalities can be unified in the same representational space.

Appendices

115

APPENDIX A

APPENDIX TO CHAPTER 3

A.1 Percentage of Hard Negatives

We show top-64 validation recalls with varying values of the hard negative percentage p in training

below:

Mixed-p (%) DUAL MULTI-8

0 (Random) 91.08 91.13

25 92.18 92.74

50 91.75 92.76

75 92.24 93.41

100 (Hard) 92.05 93.27

The presence of hard negatives is clearly helpful, but the exact choice of p > 0 is not as important.

We choose p = 50 because we find that the presence of some random negatives often gives slight

yet consistent improvement.

A.2 Reranking Experiments

We show the normalized and unnormalized accuracy of a reranker as we change the architecture

while holding the retriever fixed:

116

Model Normalized Unnormalized

Val Test Val Test

DUAL 60.43 62.49 54.87 54.73

POLY-16 60.37 60.98 54.82 53.37

POLY-64 60.80 61.88 55.20 54.15

POLY-128 60.60 62.72 55.03 54.92

MULTI-8 61.56 62.65 55.90 54.87

MULTI-64 61.94 62.94 56.23 55.15

MULTI-128 61.67 62.95 55.98 55.17

SOM 65.38 65.24 59.35 57.04

GENPOLY-128 65.89 64.98 59.82 56.82

JOINT 76.17 74.90 69.14 65.42

Logeswaran et al. 76.06 75.06 – 55.08

Wu et al. 78.24 76.58 – –

JOINT (ours) 78.82 77.09 58.77 56.56

GENPOLY-m denotes a generalized version of the poly-encoder in which we use m leftmost entity

embeddings rather than one: sθ(x, y) = 1⊤mF1:m(y)
⊤Cm(x, y). We use a trained dual encoder with

91.93% and 83.48% validation/test recalls as a fixed retriever. The accuracy increases with the

complexity of the reranker. The dual encoder and the poly-encoder are comparable, but the multi-

vector, the sum-of-max, and the generalized poly-encoder achieve substantially higher accuracies.

Not surprisingly, the joint encoder achieves the best performance. We additionally show reranking

results using the BM25 candidates provided in the Zeshel dataset for comparison with existing

results. Our implementation of JOINT with BERT-base obtains comparable accuracies.

A.3 Bias Experiments on Zeshel

We consider the dual encoder sθ(x, y) = E1(x)
⊤F1(y) where E and F are parameterized by

BERT-bases. We randomly sample 64 mentions, yielding a total of 128 entities: 64 referenced by

the mentions, and 64 whose descriptions contain these mentions. We consider these 128 entities to

117

constitute the entirety of the label space Y . On the 64 mentions, we estimate JCE(θ) by normalizing

over the 128 entities; we estimate JHARD(θ) by normalizing over K = 8 candidates where 7 are

drawn from a negative distribution: either random, hard, or mixed. Instead of a single-sample

estimate as in (3.11), we draw negative examples 500 times and average the result. We estimate

the bias b(θ) ∈ Rd by taking a difference between these two estimates and report the norm below:

Negatives ∥b(θCE)∥ ∥b(θRAND)∥

Random 16.33 166.38

Hard 0.68 0.09

Mixed-50 1.20 0.90

We consider two parameter locations. θCE is obtained by minimizing the cross-entropy loss (92.19%

accuracy). θRAND is obtained by NCE with random negatives (60% accuracy). The bias is drastically

smaller when negative examples are drawn from the model instead of randomly. Mixed negatives

yield comparably small biases. With random negatives, the bias is much larger at θRAND since

∇JCE(θRAND) is large. In contrast, hard and mixed negatives again yield small biases.

118

APPENDIX B

APPENDIX TO CHAPTER 4

B.1 Algorithm in Matrix Form

Alogrithm 1 is the matrix form of our adaptive learning algorithm.

Algorithm 1 Task sensitivity-guided adaptive learning

Require: Model parameter θ ∈ Rd; minibatches B where each batch B ∈ B is further divided
by tasks B = {Bk}k=1...K ; moving average rate β ∈ [0, 1]; temperature τ > 0; learning rate
η > 0

Ensure: median : Rd×K → RK is the column-wise median; softmax : Rd×K → Rd×K is the
row-wise softmax; 1K is a vector of K ones; ⊙ is the Hadamard product.

1: Initialize I ← 0 ∈ Rd×K .
2: for each batch B = {Bk}k=1...K in B do
3: Compute the task-specific loss Jk(θ) on Bk for each k = 1 . . . K.
4: Compute the gradient matrix G ∈ Rd×K with each column Gk ← ∇Jk(θ).
5: Compute the sensitivity matrix I ′ ∈ Rd×K with each column I ′k ← Gk ⊙ θ.
6: Normalize the sensitivity scales across tasks I ′ ← I ′diag (median(I ′))−1.
7: Update the moving average I ← βI + (1− β)I ′.
8: Update the parameter θ ← θ − η(G⊙ U)1K where U ← softmax(I/τ) ∈ Rd×K .
9: end for

B.2 Data Details

See Table B.1 for data statistics and some data-related hyperparameters. We randomly downsample

T-REx and zsRE to bring them to the same order of magnitude as the others. We follow [2] and

use temperature-scaled mixing sampling strategy to compute batch size for each task k: Bk ∝

(Nk/
∑K

k′=1Nk′)
1/c for some temperature c (we set it to 4 in our experiments). Here Nk is the

dataset size of task k. Note that we compute task loss of each task batch independently instead

of mixing all task batches for every optimization step. Each dataset needs to sample different

number of batches to cover every training sample in that dataset once. We set the maximum of

them as the number of batches that every dataset needs to sample. We shuffle and cycle batch

119

Dataset #Train B L
Natural Questions 76k 16 32
TriviaQA 53k 14 32
HotpotQA 69k 15 32
Wizard of Wikipedia 80k 16 256
T-REx 95k 16 32
FEVER 71k 15 64
Zero Shot RE 100k 17 32
AIDA-YAGO 2 18k 11 128

Table B.1: Data statistics and some data-related hyperparameters for our experiments. B denotes
batch size. L denotes query maximum input length excluding the task prefix.

sampling iterators of datasets that finish iterating early. Batch size of each dataset computed by

setting mixing temperature c = 4 and
∑K

k′=1Nk′ = 120 is in Table B.1.

B.3 Other Training Details

lr warmup #negs epochs τ β Btotal

5e-6 0.1 2 3 2 0.999 120

Table B.2: Training hyperparameters for training our TACO-DR model. We use Adam[96] with
learning rate 5e− 6. We use linear learning rate schedule with warmup raio 0.1. Each query uses
2 hard negatives for training. Each ANCE episode trains for 3 epochs. Total batch size of all task
batches are 120.

The data-related hyperparameters, such as maximum input query length and batch size, are

listed in Table B.1. The training hyperparameters are listed in Table B.2. We use NCE loss with

cross device in-batch negative mixed with hard negatives to compute each task loss. We sample

two hard negatives for each query. We employ a “burn in” period for the first 10% training steps

with uniform learning rates for parameters to declare their tendency during adaptive learning. All

of our experiments are run on a machine with 8 A100-80GB GPUS. Our implementations are built

upon OpenMatch [189].

120

B.4 Softmax Temperature and Momentum Ratio

τ 0.1 1 2 5 10 100

Avg R-prec 72.45 73.23 73.74 73.72 73.48 72.85

Table B.3: Average page-level R-precision w.r.t softmax temperature for our adaptive learning

β 0 0.6 0.7 0.8 0.9 0.999

Avg R-prec 72.91 72.98 73.02 73.16 73.61 73.74

Table B.4: Average page-level R-precision w.r.t momentum factor for our adaptive learning

Table B.3 shows the impact of softmax temperature on validation R-precision for our adap-

tive learning. Table B.4 shows the impact of momentum factor on validation R-precision for our

adaptive learning.

B.5 Passage-level Performance

Table B.5 shows the passage-level R-precision on KILT validation data. We also list the passage-

level performance from Maillard et al. [81] for comparison.

Fact Check. Slot Filling Open Domain QA Dial.
Model FEV T-REx zsRE NQ HoPo TQA WoW Avg
MT-DPR∗ 46.96 53.54 41.70 28.80 38.42 24.56 24.07 36.86
Task-specific DPR∗ 43.92 58.54 78.81 28.13 43.47 23.79 20.73 42.48
Task-specific (ours) 44.89 72.09 84.47 33.14 43.40 29.57 27.64 47.89
TACO 60.76 72.57 82.80 31.16 46.72 28.32 33.24 50.80

Table B.5: Passage-level R-precision on KILT validation data. Bold indicates the best model
and underline indicates the second. ∗ marks results from Maillard et al. [81].Only page-level R-
precision is defined for AIDA.

121

APPENDIX C

APPENDIX TO CHAPTER 5

C.1 Passage Encoding

Given k retrieved passages, we must obtain the key-value (KV) states from the middle layer group

LM to enable cross-attention. We explore three passage encoding strategies, summarized in Ta-

ble C.1.

First, we consider Independent Encoding, where each passage is encoded separately using

position IDs starting from zero, following the parallel encoding strategy in Yen et al. [190]. The

resulting KV states are then concatenated across passages.

Second, we examine Concatenated Encoding (Segmented), in which passages are concatenated

into a single sequence, but attention across passages is blocked to prevent inter-passage interaction.

Third, we evaluate Concatenated Encoding (Full Attention), where passages are concatenated

and full cross-passage attention is allowed throughout the encoding.

We conduct these experiments by finetuning Llama-3.1 8B model on the Natural Questions

(NQ) dataset using the top-10 passages retrieved by Contriever-MSMARCO, and report Exact

Match (EM) scores on the development set. As shown in Table C.1, the two simpler strate-

gies—Independent Encoding and Segmented Concatenation—perform similarly, while Full Atten-

tion Concatenation yields a clear performance improvement, highlighting the benefit of modeling

inter-passage dependencies.

Encoding Method Dev EM
Independent Encoding 51.7

Segmented Concatenation 51.4
Full Attention Concatenation 53.3

Table C.1: Performance of different passage encoding strategies.

122

C.2 Freezing Passage Representations

We investigate the impact of freezing passage representations—either hidden states or key-value

(KV) states—during inference with a fixed retriever. All experiments are conducted using a fine-

tuned LLaMA-3.1 8B model and the top-10 passages retrieved by Contriever-MSMARCO on the

Natural Questions (NQ) dataset. Results are reported in Table C.2.

We explore two freezing strategies, both using the Independent Encoding approach described

in Appendix C.1. In the first variant, Frozen Hidden States, we freeze the hidden representations

of retrieved passages as produced by the initial (untrained) LLaMA-3.1 8B model, and pass them

through the trained key/value projection layers to generate the KV states used in cross-attention.

In the second variant, Frozen KV States, we directly freeze the key and value attention states

of the passages, also obtained from the initial LLama-3.1 8B model.

We observe that both freezing methods yield comparable performance, slightly underperform-

ing the fully dynamic setting where passage KV states are computed using the trained model.

Method Dev EM
No Freezing 51.4

Frozen Hidden States 50.8
Frozen KV States 50.7

Table C.2: Performance of freezing different passage representations on NQ dev set with top-10
Contriever-MSMARCO retrieved passages.

C.3 Passage KV States Compression

When we use independent encoding strategy in Appendix C.1, one benefit will be that we can

save the middle layer group key value states for all the passages in knowledge corpus in disk and

during inference after retrieval we can load the key value states from disk without recomputation.

However, this will result in a large amount of disk spaces. Thus, we consider two compression

strategies: token compression and product quantization and we conduct experiments following the

same setting as the Frozen KV states in Appendix C.2. Specifically, take for token compression, we

123

use the Heavy Hitter [191] and only keep half number of tokens for each passage. For production

quantization, we use FAISS codec with index type OPQ32x128-PQ32x8 for each key value head,

which is trained on 500k randomly sampled wikipedia passages. The compression rate with this

quantization is 128×2
32

= 8 for original bfloat16 state vector of each attention head. We report the

results in Table C.3. We can see that both strategies don’t hurt the performance much.

Compression Dev EM
No Compression 50.7

Heavy Hitter 49.9
Product Quantization 50.3

Table C.3: The results for various compression techniques.

C.4 Instruction-Tuning Datasets

We use OpenAssistant Conversations Dataset (oasst1; [192]), Conversational Question Answer-

ing (CoQA; [193]), Discrete Reasoning Over Paragraphs (DROP; [194]), NewsQA [195], Pub-

MedQA [196], QA for Artificial Intelligence (Quail; [197]), SQuAD v2 [198],1 and CNN Daily-

Mail [199] The templates for these datasets are shown in Table C.4.

Task Template
Instruction-Tuning Tasks
oasst1 {turn1} {turn2} {turn3} ...
CoQA, DROP, NewsQA, PubMedQA,
SQuAD

{context} Q: {question} A: {answer}

CNN DailyMail {context} Summarize this article: {summary}

Table C.4: Prompt templates. We only use retrieval for knowledge-intensive tasks.

C.5 Baselines and Computational Resources

Discussions on Baselines. For all these baselines, we use the retrieve-then-generate paradigm,

i.e., begin by retrieving candidates using the retrievers and then incorporate them into the context

for training and inference. This implies that these baselines require an additional retriever, leading
1We only use answerable questions from SQuAD v2.

124

to increased computational costs and a higher number of model parameters compared to ImpRAG.

However, since this is a standard practice for retrieval-augmented models, we continue to use them

in the baselines to establish stronger comparisons.

Computational Resources. We use NVIDIA H100 GPUs. Each training session requires 8

H100 GPUs, and hosting the index also demands an additional 8 GPUs. Training the baseline

approaches takes roughly 96 GPU hours, whereas our models require approximately 160 GPU

hours.

125

APPENDIX D

APPENDIX TO CHAPTER 6

D.1 Threshold Optimization

To see if it is possible to improve over the static threshold value γ = 0.05, we tried automatically

calibrating γ based on the AIDA validation performance by considering every effective threshold

obtained from a sorted list of probabilities of labeled mentions. The best threshold was γ =

0.03146. The validation F1 score improved from 87.32 to 87.75, and the GERBIL test score

improved from 60.46 to 60.55. Thus threshold optimization can yield a minor improvement, but

overall we find that EntQA is robust to choices of threshold in a reasonable range.

D.2 Document-Level Information

We explored various ways of injecting document-level information in paragraphs. We tried the

first token, the first sentence, and a continuous topic embedding (obtained by averaging all token

embeddings in the document). We settled on the first-token version because it gave the best per-

formance. For many of the GERBIL datasets, however, we obtain almost the same performance

with or without the topic information. As it is somewhat dataset-specific (e.g., the first word in

AIDA is always the topic word), we leave it as an option in our model for the user to decide. Ta-

ble D.1 shows the GERBIL performance without any topic information vs with the first token in

the document.

Table D.1: GERBIL test scores with and without using the first document token as document-level
topical information.

Topic Info AIDA MSNBC Der K50 R128 R500 OKE15 OKE16 Avg
None 81.7 72.2 52.5 64.2 54.0 40.3 59.0 48.9 59.1
First token 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5

126

APPENDIX E

APPENDIX TO CHAPTER 7

E.1 Constrained Decoding

We implement constrained decoding through vocabulary masking, which depends on the current

state of the generated sequence. Below, we outline the masking rules for various models. For more

details, please check our code.

E.1.1 Full Linearization

We categorize the state of the generated tokens thus far in full linearization with integer cluster

identity as follows:

1. Inside Cluster Identity: Cluster identity generation stage (i.e., the count of mention end

tokens </m> is less than that of separation token |).

2. Inside Mention: Open mentions exist (i.e., the count of separation tokens | is less than that

of mention start tokens <m>), but not in Inside Cluster Identity state.

3. Outside: Not in Inside Mention or Inside Cluster Identity states.

Token Action. Depending on the current state, different tokens are permitted:

• Outside: The next token from the input source and the mention start token <m> are allowed.

• Inside Mention: The next token from the input source, the mention start token <m>, and the

separation token | are allowed.

• Inside Cluster Identity: All integer tokens and the mention end token </m> are allowed.

127

Copy Action. For the Copy Action model, trained to generate a copy action token <c> rather

than the actual next source token, we manipulate the logits scores to enforce the generation of the

actual source token. Specifically, the logits score of the actual next source token is set to that of the

copy token <c>. The copy token <c> is then masked out. The rules for permissible tokens remain

consistent with those for Token Action.

E.1.2 Partial Linearization

Due to alignment issues with the input source in partial linearization, it’s infeasible to impose con-

straints on source input token generation as in full linearization. Nonetheless, sentence-level con-

straints can be applied by utilizing sentence boundary markers <sentence> and </sentence>

in both the input source and linearization. We identify the current state of the generated tokens in

partial linearization based on sentence markers and integer cluster identity as:

1. Complete Sentence: Equal counts of sentence start <sentence> and end markers

</sentence>.

2. Inside Sentence i: Within the i-th sentence (i.e., <sentence> count is i and not in Com-

plete Sentence state).

3. Inside Cluster Identity: Cluster identity generation stage (i.e., the count of mention end

tokens </m> is less than that of separation token |).

4. Inside Mention: Open mentions exist (i.e., the count of separation tokens | is less than that

of mention start tokens <m>), but not in Inside Cluster Identity state.

5. Outside: Not in Inside Mention or Inside Cluster Identity states.

Depending on the current state, different tokens are permitted:

• Complete Sentence: only sentence start marker token <sentence> is allowed.

• Outside and Inside sentence i: All the tokens from the i-th sentence in the input source, the

mention start token <m> and the sentence end marker token </sentence> are allowed.

128

• Inside Mention and Inside Sentence i: All the tokens from the i-th sentence in the input

source, the mention start token <m>, the separation token | and the sentence end marker

token </sentence> are allowed.

• Inside Cluster Identity and Inside Sentence i: All the tokens from the i-th sentence in the

input source, all integer tokens, the mention end token </m> and the sentence end marker

token </sentence> are allowed.

E.1.3 Integer-Free Representation.

In the integer-free model, which is trained to predict <new> for unseen clusters instead of </ml+1>,

where </m0>,</m1>, . . . ,</ml> have already appeared, we manipulate the logits scores to en-

force the generation of the </ml+1> token instead of <new> token for unseen cluster. Specifically,

the logits score of the </ml+1> token is set to that of the <new> token. The <new> token is

then masked out. We categorize the state of the generated tokens thus far in full linearization with

integer-free cluster identity as follows:

1. Inside Mention Seen l: Open mentions exist (i.e., the count of cluster identity hard-coded

mention end tokens </ml> is less than that of mention start tokens <m>) and

</m0>,</m1>, . . . ,</ml> has been seen so far.

2. Outside Mention: No open mentions.

Depending on the current state, different tokens are permitted:

• Inside Mention Seen l: The next token from the input source, the mention start token <m>,

and cluster identity hard-coded mention end tokens </m0>,</m1>, . . . ,</ml>,</ml+1> are

allowed.

• Outside Mention: The next token from the input source and the mention start token <m> are

allowed.

129

ACKNOWLEDGMENT OF PREVIOUS PUBLICATIONS

Portions of this dissertation are based on the following first-authored publications:

• Wenzheng Zhang and Karl Stratos. “Understanding Hard Negatives in Noise Contrastive

Estimation.” Proceedings of NAACL, 2021.

• Wenzheng Zhang, Wenyue Hua, and Karl Stratos. “EntQA: Entity Linking as Question

Answering.” International Conference on Learning Representations (ICLR), 2022.

• Wenzheng Zhang, Chenyan Xiong, Karl Stratos, and Arnold Overwijk. “Improving Multi-

task Retrieval by Promoting Task Specialization.” Transactions of the Association for Com-

putational Linguistics (TACL), 2023.

• Wenzheng Zhang, Sam Wiseman, and Karl Stratos. “Seq2seq is All You Need for Corefer-

ence Resolution.” Proceedings of EMNLP, 2023.

• Wenzheng Zhang, Xi Victoria Lin, Karl Stratos, Wen-tau Yih, and Mingda Chen. “ImpRAG:

Retrieval-Augmented Generation with Implicit Queries.” arXiv preprint arXiv:2506.02279,

2025.

These works have been incorporated into Chapters 3, 5, 6, 7, and 8 of this dissertation, re-

spectively. I was primarily responsible for the implementation, experimentation, and analysis in

each of these projects. Research design and writing were carried out collaboratively with my co-

authors. All chapters have been adapted and revised to ensure cohesion and consistency within the

dissertation.

130

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[2] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text trans-
former,” Journal of Machine Learning Research, 2019.

[3] T. Brown et al., “Language models are few-shot learners,” Advances in neural information
processing systems, vol. 33, pp. 1877–1901, 2020.

[4] J. Achiam et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[5] A. Grattafiori et al., “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[6] F. Petroni et al., “Kilt: A benchmark for knowledge intensive language tasks,” in NAACL-
HLT, 2021.

[7] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive nlp tasks,” Ad-
vances in neural information processing systems, vol. 33, pp. 9459–9474, 2020.

[8] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity linking,” in Pro-
ceedings of the 22nd Conference on Computational Natural Language Learning, 2018,
pp. 519–529.

[9] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural coreference resolution,”
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, 2017, pp. 188–197.

[10] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia to answer open-domain
questions,” in Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), R. Barzilay and M.-Y. Kan, Eds., Vancouver,
Canada: Association for Computational Linguistics, Jul. 2017, pp. 1870–1879.

[11] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “FEVER: A large-scale
dataset for fact extraction and VERification,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), M. Walker, H. Ji, and A. Stent, Eds.,
New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 809–
819.

arXiv:2303.08774

131

[12] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cam-
bridge University Press, 2008.

[13] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: Bm25 and be-
yond,” Foundations and Trends in Information Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[14] V. Karpukhin et al., “Dense passage retrieval for open-domain question answering,” in Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Online: Association for Computational Linguistics, Nov. 2020, pp. 6769–6781.

[15] D. Gillick et al., “Learning dense representations for entity retrieval,” in Proceedings of
the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 528–537.

[16] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-
networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3982–3992.

[17] K. Lee, M.-W. Chang, and K. Toutanova, “Latent retrieval for weakly supervised open
domain question answering,” in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds., Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 6086–6096.

[18] D. Gillick, A. Presta, and G. S. Tomar, “End-to-end retrieval in continuous space,” arXiv
preprint arXiv:1811.08008, 2018.

[19] M. Douze et al., “The faiss library,” arXiv preprint arXiv:2401.08281, 2024.

[20] O. Khattab and M. Zaharia, “Colbert: Efficient and effective passage search via contextu-
alized late interaction over BERT,” in Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020, Virtual
Event, China, July 25-30, 2020, ACM, 2020, pp. 39–48.

[21] S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston, “Poly-encoders: Architectures and
pre-training strategies for fast and accurate multi-sentence scoring,” in International Con-
ference on Learning Representations, 2020.

[22] N. De Cao, G. Izacard, S. Riedel, and F. Petroni, “Autoregressive entity retrieval,” in Inter-
national Conference on Learning Representations, 2021.

[23] Y. Tay et al., “Transformer memory as a differentiable search index,” Advances in Neural
Information Processing Systems, vol. 35, pp. 21 831–21 843, 2022.

arXiv:1811.08008

132

[24] Y. Wang et al., “A neural corpus indexer for document retrieval,” Advances in Neural
Information Processing Systems, vol. 35, pp. 25 600–25 614, 2022.

[25] M. Bevilacqua, G. Ottaviano, P. Lewis, W.-t. Yih, S. Riedel, and F. Petroni, “Autore-
gressive search engines: Generating substrings as document identifiers,” arXiv preprint
arXiv:2204.10628, 2022.

[26] W. Sun et al., “Learning to tokenize for generative retrieval,” Advances in Neural Informa-
tion Processing Systems, vol. 36, pp. 46 345–46 361, 2023.

[27] R. Pradeep et al., “How does generative retrieval scale to millions of passages?” In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Lin-
guistics, Dec. 2023, pp. 1305–1321.

[28] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statistics,” The journal of machine learning
research, vol. 13, no. 1, pp. 307–361, 2012.

[29] A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural probabilistic
language models,” in Proceedings of the 29th International Coference on International
Conference on Machine Learning, 2012, pp. 419–426.

[30] Z. Ma and M. Collins, “Noise contrastive estimation and negative sampling for conditional
models: Consistency and statistical efficiency,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium: Association for
Computational Linguistics, Oct. 2018, pp. 3698–3707.

[31] V. Karpukhin et al., “Dense passage retrieval for open-domain question answering,” arXiv
preprint arXiv:2004.04906, 2020.

[32] L. Xiong et al., “Approximate nearest neighbor negative contrastive learning for dense text
retrieval,” in International Conference on Learning Representations, 2021.

[33] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “Retrieval augmented language model
pre-training,” in International conference on machine learning, PMLR, 2020, pp. 3929–
3938.

[34] G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open
domain question answering,” in Proceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics: Main Volume, P. Merlo, J. Tiede-
mann, and R. Tsarfaty, Eds., Online: Association for Computational Linguistics, Apr. 2021,
pp. 874–880.

133

[35] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020, pp. 7871–7880.

[36] S. Min, J. Michael, H. Hajishirzi, and L. Zettlemoyer, “AmbigQA: Answering ambiguous
open-domain questions,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.,
Online: Association for Computational Linguistics, Nov. 2020, pp. 5783–5797.

[37] G. Izacard and E. Grave, “Distilling knowledge from reader to retriever for question an-
swering,” in International Conference on Learning Representations, 2021.

[38] X. V. Lin et al., “RA-DIT: Retrieval-augmented dual instruction tuning,” in The Twelfth
International Conference on Learning Representations, 2024.

[39] G. Izacard et al., “Atlas: Few-shot learning with retrieval augmented language models,”
Journal of Machine Learning Research, vol. 24, no. 251, pp. 1–43, 2023.

[40] W. Shi et al., “Replug: Retrieval-augmented black-box language models,” in NAACL-HLT,
2024.

[41] S. Yao et al., “React: Synergizing reasoning and acting in language models,” in Interna-
tional Conference on Learning Representations (ICLR), 2023.

[42] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis, “Measuring and
narrowing the compositionality gap in language models,” in Findings of the Association
for Computational Linguistics: EMNLP 2023, 2023, pp. 5687–5711.

[43] O. Khattab et al., “Demonstrate-search-predict: Composing retrieval and language models
for knowledge-intensive nlp,” arXiv preprint arXiv:2212.14024, 2022.

[44] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-rag: Learning to retrieve, generate,
and critique through self-reflection,” in International Conference on Learning Representa-
tions (ICLR), 2024.

[45] M. Chen et al., “Learning to reason with search for llms via reinforcement learning,” arXiv
preprint arXiv:2503.19470, 2025.

[46] N. Gupta, S. Singh, and D. Roth, “Entity linking via joint encoding of types, descriptions,
and context,” in Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 2017, pp. 2681–2690.

[47] J. Hoffart et al., “Robust disambiguation of named entities in text,” in Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, 2011, pp. 782–
792.

arXiv:2503.19470

134

[48] X. Ling, S. Singh, and D. S. Weld, “Design challenges for entity linking,” Transactions of
the Association for Computational Linguistics, vol. 3, pp. 315–328, 2015.

[49] J. M. van Hulst, F. Hasibi, K. Dercksen, K. Balog, and A. P. de Vries, “Rel: An entity linker
standing on the shoulders of giants,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2020, pp. 2197–2200.

[50] K. Lee, L. He, and L. Zettlemoyer, “Higher-order coreference resolution with coarse-to-
fine inference,” in Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), New Orleans, Louisiana: Association for Computational Linguistics, Jun.
2018, pp. 687–692.

[51] L. Xu and J. D. Choi, “Revealing the myth of higher-order inference in coreference reso-
lution,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Online: Association for Computational Linguistics, Nov. 2020, pp. 8527–
8533.

[52] Y. Kirstain, O. Ram, and O. Levy, “Coreference resolution without span representations,”
in Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), Online: Association for Computational Linguistics, Aug. 2021, pp. 14–
19.

[53] T. Liu, Y. E. Jiang, N. Monath, R. Cotterell, and M. Sachan, “Autoregressive structured
prediction with language models,” in Findings of the Association for Computational Lin-
guistics: EMNLP 2022, Abu Dhabi, United Arab Emirates: Association for Computational
Linguistics, Dec. 2022, pp. 993–1005.

[54] B. Bohnet, C. Alberti, and M. Collins, “Coreference Resolution through a seq2seq Transition-
Based System,” Transactions of the Association for Computational Linguistics, vol. 11,
pp. 212–226, Mar. 2023.

[55] G. Urbizu, A. Soraluze, and O. Arregi, “Sequence to sequence coreference resolution,” in
Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and
Coreference, Barcelona, Spain (online): Association for Computational Linguistics, Dec.
2020, pp. 39–46.

[56] G. Paolini et al., “Structured prediction as translation between augmented natural lan-
guages,” in International Conference on Learning Representations, 2021.

[57] M. Vilain, J. D. Burger, J. Aberdeen, D. Connolly, and L. Hirschman, “A model-theoretic
coreference scoring scheme,” in Sixth Message Understanding Conference (MUC-6): Pro-
ceedings of a Conference Held in Columbia, Maryland, November 6-8, 1995, 1995.

135

[58] A. Bagga and B. Baldwin, “Algorithms for scoring coreference chains,” in The first inter-
national conference on language resources and evaluation workshop on linguistics coref-
erence, vol. 1, 1998, pp. 563–566.

[59] X. Luo, “On coreference resolution performance metrics,” in Proceedings of Human Lan-
guage Technology Conference and Conference on Empirical Methods in Natural Language
Processing, R. Mooney, C. Brew, L.-F. Chien, and K. Kirchhoff, Eds., Vancouver, British
Columbia, Canada: Association for Computational Linguistics, Oct. 2005, pp. 25–32.

[60] W. Zhang and K. Stratos, “Understanding hard negatives in noise contrastive estimation,”
in Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2021, pp. 1090–1101.

[61] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning deep structured
semantic models for web search using clickthrough data,” in Proceedings of the 22nd ACM
international conference on Information & Knowledge Management, 2013, pp. 2333–
2338.

[62] T. Févry, N. FitzGerald, L. B. Soares, and T. Kwiatkowski, “Empirical evaluation of pre-
training strategies for supervised entity linking,” in Automated Knowledge Base Construc-
tion, 2020.

[63] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes for good
views for contrastive learning,” arXiv preprint arXiv:2005.10243, 2020.

[64] Y. Bengio and J.-S. Senécal, “Adaptive importance sampling to accelerate training of a
neural probabilistic language model,” IEEE Transactions on Neural Networks, vol. 19,
no. 4, pp. 713–722, 2008.

[65] Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins, “Sparse, dense, and attentional rep-
resentations for text retrieval,” arXiv preprint arXiv:2005.00181, 2020.

[66] L. Logeswaran, M.-W. Chang, K. Lee, K. Toutanova, J. Devlin, and H. Lee, “Zero-shot
entity linking by reading entity descriptions,” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, 2019, pp. 3449–3460.

[67] L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer, “Scalable zero-shot entity
linking with dense entity retrieval,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 6397–6407.

[68] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” arXiv preprint arXiv:1807.03748, 2018.

[69] K. Stratos, Noise contrastive estimation, http://karlstratos.com/notes/nce.pdf, Unpublished
technical note. Accessed: April 8, 2021, 2019.

http://karlstratos.com/notes/nce.pdf

136

[70] G. Blanc and S. Rendle, “Adaptive sampled softmax with kernel based sampling,” in Inter-
national Conference on Machine Learning, 2018, pp. 590–599.

[71] A. S. Rawat, J. Chen, F. X. X. Yu, A. T. Suresh, and S. Kumar, “Sampled softmax with
random fourier features,” in Advances in Neural Information Processing Systems, 2019,
pp. 13 857–13 867.

[72] R. D. Hjelm et al., “Learning deep representations by mutual information estimation and
maximization,” in International Conference on Learning Representations, 2019.

[73] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in International conference on machine learning, PMLR,
2020, pp. 1597–1607.

[74] J. D. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive learning with hard
negative samples,” in International Conference on Learning Representations, 2021.

[75] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: As-
sociation for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[76] N. Gupta, S. Singh, and D. Roth, “Entity linking via joint encoding of types, descriptions,
and context,” in Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, Copenhagen, Denmark: Association for Computational Linguistics,
Sep. 2017, pp. 2681–2690.

[77] K. Lee, M.-W. Chang, and K. Toutanova, “Latent retrieval for weakly supervised open
domain question answering,” in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019, pp. 6086–6096.

[78] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “Realm: Retrieval-augmented
language model pre-training,” arXiv preprint arXiv:2002.08909, 2020.

[79] O.-E. Ganea and T. Hofmann, “Deep joint entity disambiguation with local neural atten-
tion,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017,
pp. 2619–2629.

[80] W. Zhang, C. Xiong, K. Stratos, and A. Overwijk, “Improving multitask retrieval by pro-
moting task specialization,” Transactions of the Association for Computational Linguistics,
vol. 11, pp. 1201–1212, 2023.

137

[81] J. Maillard et al., “Multi-task retrieval for knowledge-intensive tasks,” in Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
2021, pp. 1098–1111.

[82] L. Xiong et al., “Approximate nearest neighbor negative contrastive learning for dense text
retrieval,” in International Conference on Learning Representations, 2021.

[83] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery for
multi-task learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 5824–
5836, 2020.

[84] Z. Wang, Y. Tsvetkov, O. Firat, and Y. Cao, “Gradient vaccine: Investigating and improving
multi-task optimization in massively multilingual models,” arXiv preprint arXiv : 2010 .
05874, 2020.

[85] V. Piratla, P. Netrapalli, and S. Sarawagi, “Focus on the common good: Group distribu-
tional robustness follows,” arXiv preprint arXiv:2110.02619, 2021.

[86] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks,” in International conference
on machine learning, PMLR, 2018, pp. 794–803.

[87] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural
networks for resource efficient inference,” arXiv preprint arXiv:1611.06440, 2016.

[88] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation for
neural network pruning,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 11 264–11 272.

[89] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than one?” Advances
in neural information processing systems, vol. 32, 2019.

[90] C. Liang et al., “Super tickets in pre-trained language models: From model compression
to improving generalization,” arXiv preprint arXiv:2105.12002, 2021.

[91] C. Liang et al., “No parameters left behind: Sensitivity guided adaptive learning rate for
training large transformer models,” in International Conference on Learning Representa-
tions, 2022.

[92] J. Chen, R. Zhang, J. Guo, Y. Liu, Y. Fan, and X. Cheng, “Corpusbrain: Pre-train a gener-
ative retrieval model for knowledge-intensive language tasks,” arXiv preprint arXiv:2208.
07652, 2022.

arXiv:2010.05874
arXiv:2010.05874
arXiv:2208.07652
arXiv:2208.07652

138

[93] A. Asai et al., “Task-aware retrieval with instructions,” arXiv preprint arXiv:2211.09260,
2022.

[94] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a”
siamese” time delay neural network,” Advances in neural information processing systems,
vol. 6, 1993.

[95] J. Ni et al., “Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models,”
arXiv preprint arXiv:2108.08877, 2021.

[96] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR (Poster),
2015.

[97] M. Leszczynski, D. Fu, M. Chen, and C. Ré, “Tabi: Type-aware bi-encoders for open-
domain entity retrieval,” in Findings of the Association for Computational Linguistics:
ACL 2022, 2022, pp. 2147–2166.

[98] T. Nguyen et al., “Ms marco: A human generated machine reading comprehension dataset,”
choice, vol. 2640, p. 660, 2016.

[99] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych, “BEIR: A heteroge-
neous benchmark for zero-shot evaluation of information retrieval models,” in Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

[100] W. Zhang, X. V. Lin, K. Stratos, W.-t. Yih, and M. Chen, “Imprag: Retrieval-augmented
generation with implicit queries,” arXiv e-prints, arXiv–2506, 2025.

[101] Z. Jiang et al., “Retrieval as attention: End-to-end learning of retrieval and reading within
a single transformer,” in Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, 2022, pp. 2336–2349.

[102] J. Zhang et al., “Onegen: Efficient one-pass unified generation and retrieval for llms,” in
Findings of the Association for Computational Linguistics: EMNLP 2024, 2024, pp. 4088–
4119.

[103] A. Lazaridou, E. Gribovskaya, W. Stokowiec, and N. Grigorev, “Internet-augmented lan-
guage models through few-shot prompting for open-domain question answering,” arXiv
preprint arXiv:2203.05115, 2022.

[104] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Interleaving retrieval with
chain-of-thought reasoning for knowledge-intensive multi-step questions,” in The 61st An-
nual Meeting Of The Association For Computational Linguistics, 2023.

139

[105] Z. Jiang et al., “Active retrieval augmented generation,” in Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, 2023, pp. 7969–7992.

[106] M. Chen, X. Chen, and W.-t. Yih, “Few-shot data synthesis for open domain multi-hop
question answering,” in Proceedings of the 18th Conference of the European Chapter of
the Association for Computational Linguistics (Volume 1: Long Papers), 2024, pp. 190–
208.

[107] H. Yang et al., “Memory3: Language modeling with explicit memory,” arXiv preprint
arXiv:2407.01178, 2024.

[108] S. Lu, H. Wang, Y. Rong, Z. Chen, and Y. Tang, “Turborag: Accelerating retrieval-augmented
generation with precomputed kv caches for chunked text,” arXiv preprint arXiv : 2410 .
07590, 2024.

[109] B. Wang et al., “Instructretro: Instruction tuning post retrieval-augmented pretraining,” in
International Conference on Machine Learning, PMLR, 2024, pp. 51 255–51 272.

[110] S. Borgeaud et al., “Improving language models by retrieving from trillions of tokens,” in
International conference on machine learning, PMLR, 2022, pp. 2206–2240.

[111] B. Wang et al., “Shall we pretrain autoregressive language models with retrieval? a compre-
hensive study,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023, pp. 7763–7786.

[112] L. Zhang, Y. Yu, K. Wang, and C. Zhang, “Arl2: Aligning retrievers with black-box large
language models via self-guided adaptive relevance labeling,” in Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2024, pp. 3708–3719.

[113] A. Asai et al., “Task-aware retrieval with instructions,” in The 61st Annual Meeting Of The
Association For Computational Linguistics, 2023.

[114] Y. Lee, M. Kim, and S.-w. Hwang, “Disentangling questions from query generation for
task-adaptive retrieval,” in EMNLP (Findings), 2024.

[115] H. Oh et al., “Instructir: A benchmark for instruction following of information retrieval
models,” arXiv preprint arXiv:2402.14334, 2024.

[116] O. Weller et al., “Followir: Evaluating and teaching information retrieval models to fol-
low instructions,” in Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), 2025, pp. 11 926–11 942.

arXiv:2410.07590
arXiv:2410.07590

140

[117] W. Wu, Y. Wang, G. Xiao, H. Peng, and Y. Fu, “Retrieval head mechanistically explains
long-context factuality,” arXiv preprint arXiv:2404.15574, 2024.

[118] Z. Zhao, Y. Ziser, and S. B. Cohen, “Layer by layer: Uncovering where multi-task learning
happens in instruction-tuned large language models,” in Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics,
Nov. 2024, pp. 15 195–15 214.

[119] N. Muennighoff et al., “Generative representational instruction tuning,” in ICLR 2024
Workshop: How Far Are We From AGI, 2024.

[120] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebron, and S. Sanghai, “Gqa:
Training generalized multi-query transformer models from multi-head checkpoints,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, 2023, pp. 4895–4901.

[121] J. Fang et al., “Unimem: Towards a unified view of long-context large language models,”
in First Conference on Language Modeling, 2024.

[122] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: Enhanced transformer with
rotary position embedding,” Neurocomputing, vol. 568, p. 127 063, 2024.

[123] W. Zhang, W. Hua, and K. Stratos, “EntQA: Entity linking as question answering,” in
International Conference on Learning Representations, 2022.

[124] G. Izacard et al., “Unsupervised dense information retrieval with contrastive learning,”
Transactions on Machine Learning Research, 2022.

[125] T. Kwiatkowski et al., “Natural questions: A benchmark for question answering research,”
Transactions of the Association for Computational Linguistics, vol. 7, L. Lee, M. Johnson,
B. Roark, and A. Nenkova, Eds., pp. 452–466, 2019.

[126] Z. Yang et al., “HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds., Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 2369–2380.

[127] M. Chen et al., “Improving in-context few-shot learning via self-supervised training,” in
Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, M. Carpuat, M.-C. de Marn-
effe, and I. V. Meza Ruiz, Eds., Seattle, United States: Association for Computational
Linguistics, Jul. 2022, pp. 3558–3573.

141

[128] J. Wei et al., “Measuring short-form factuality in large language models,” arXiv preprint
arXiv:2411.04368, 2024.

[129] X. Ho, A.-K. Duong Nguyen, S. Sugawara, and A. Aizawa, “Constructing a multi-hop
QA dataset for comprehensive evaluation of reasoning steps,” in Proceedings of the 28th
International Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong,
Eds., Barcelona, Spain (Online): International Committee on Computational Linguistics,
Dec. 2020, pp. 6609–6625.

[130] H. Elsahar et al., “T-REx: A large scale alignment of natural language with knowledge
base triples,” in Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), N. Calzolari et al., Eds., Miyazaki, Japan: European
Language Resources Association (ELRA), May 2018.

[131] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, “Zero-shot relation extraction via reading
comprehension,” in Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), R. Levy and L. Specia, Eds., Vancouver, Canada: Associ-
ation for Computational Linguistics, Aug. 2017, pp. 333–342.

[132] J. Hoffart et al., “Robust disambiguation of named entities in text,” in Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, R. Barzilay and
M. Johnson, Eds., Edinburgh, Scotland, UK.: Association for Computational Linguistics,
Jul. 2011, pp. 782–792.

[133] D. A. Ferrucci, “Introduction to “this is watson”,” IBM Journal of Research and Develop-
ment, vol. 56, no. 3.4, pp. 1–1, 2012.

[134] C. Xiong, J. Callan, and T.-Y. Liu, “Word-entity duet representations for document rank-
ing,” in Proceedings of the 40th International ACM SIGIR conference on research and
development in information retrieval, 2017, pp. 763–772.

[135] F. Hasibi, K. Balog, and S. E. Bratsberg, “Exploiting entity linking in queries for entity
retrieval,” in Proceedings of the 2016 acm international conference on the theory of infor-
mation retrieval, 2016, pp. 209–218.

[136] K. Balog, H. Ramampiaro, N. Takhirov, and K. Nørvåg, “Multi-step classification ap-
proaches to cumulative citation recommendation,” in Proceedings of the 10th conference
on open research areas in information retrieval, 2013, pp. 121–128.

[137] R. Reinanda, E. Meij, and M. de Rijke, “Mining, ranking and recommending entity as-
pects,” in Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2015, pp. 263–272.

[138] Y. Yang, O. İrsoy, and K. S. Rahman, “Collective entity disambiguation with structured
gradient tree boosting,” in Proceedings of the 2018 Conference of the North American

142

Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), 2018, pp. 777–786.

[139] B. Slawski, How google uses named entity disambiguation for entities with the same
names, Accessed: 2021-09-27, Sep. 2015.

[140] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text encoders
as discriminators rather than generators,” in International Conference on Learning Repre-
sentations, 2019.

[141] O.-E. Ganea and T. Hofmann, “Deep joint entity disambiguation with local neural atten-
tion,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 2619–2629.

[142] M. Röder, R. Usbeck, and A.-C. Ngonga Ngomo, “Gerbil–benchmarking named entity
recognition and linking consistently,” Semantic Web, vol. 9, no. 5, pp. 605–625, 2018.

[143] C. Alberti, K. Lee, and M. Collins, “A bert baseline for the natural questions,” arXiv
preprint arXiv:1901.08634, 2019.

[144] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE
Transactions on Big Data, 2019.

[145] L. Derczynski et al., “Analysis of named entity recognition and linking for tweets,” Infor-
mation Processing & Management, vol. 51, no. 2, pp. 32–49, 2015.

[146] J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald, and G. Weikum, “Kore: Keyphrase over-
lap relatedness for entity disambiguation,” in Proceedings of the 21st ACM international
conference on Information and knowledge management, 2012, pp. 545–554.

[147] M. Röder, R. Usbeck, S. Hellmann, D. Gerber, and A. Both, “N3-a collection of datasets
for named entity recognition and disambiguation in the nlp interchange format.,” in LREC,
2014, pp. 3529–3533.

[148] A. G. Nuzzolese, A. L. Gentile, V. Presutti, A. Gangemi, D. Garigliotti, and R. Nav-
igli, “Open knowledge extraction challenge,” in Semantic Web Evaluation Challenges,
Springer, 2015, pp. 3–15.

[149] F. Petroni et al., “KILT: A benchmark for knowledge intensive language tasks,” in Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Online: Association for Com-
putational Linguistics, Jun. 2021, pp. 2523–2544.

143

[150] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable questions
for squad,” in Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), 2018, pp. 784–789.

[151] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for sequence label-
ing,” in Proceedings of the 27th international conference on computational linguistics,
2018, pp. 1638–1649.

[152] N. Steinmetz and H. Sack, “Semantic multimedia information retrieval based on contextual
descriptions,” in Extended Semantic Web Conference, Springer, 2013, pp. 382–396.

[153] A. Moro, A. Raganato, and R. Navigli, “Entity linking meets word sense disambiguation:
A unified approach,” Transactions of the Association for Computational Linguistics, vol. 2,
pp. 231–244, 2014.

[154] S. Broscheit, “Investigating entity knowledge in bert with simple neural end-to-end en-
tity linking,” in Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), 2019, pp. 677–685.

[155] P. H. Martins, Z. Marinho, and A. F. Martins, “Joint learning of named entity recogni-
tion and entity linking,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop, 2019, pp. 190–196.

[156] I. Yamada, A. Asai, and H. Hajishirzi, “Efficient passage retrieval with hashing for open-
domain question answering,” arXiv preprint arXiv:2106.00882, 2021.

[157] L. He, M. Lewis, and L. Zettlemoyer, “Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language,” in Proceedings of the 2015 conference
on empirical methods in natural language processing, 2015, pp. 643–653.

[158] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, “Zero-shot relation extraction via reading
comprehension,” in Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), 2017, pp. 333–342.

[159] X. Li et al., “Entity-relation extraction as multi-turn question answering,” in Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 1340–
1350.

[160] X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li, “A unified mrc framework for named
entity recognition,” in Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, 2020, pp. 5849–5859.

[161] R. Aralikatte, M. Lamm, D. Hardt, and A. Søgaard, “Ellipsis resolution as question an-
swering: An evaluation,” in Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, 2021, pp. 810–817.

144

[162] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language decathlon:
Multitask learning as question answering,” arXiv preprint arXiv:1806.08730, 2018.

[163] W. Wu, F. Wang, A. Yuan, F. Wu, and J. Li, “Corefqa: Coreference resolution as query-
based span prediction,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 6953–6963.

[164] W. Zhang, S. Wiseman, and K. Stratos, “Seq2seq is all you need for coreference resolu-
tion,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, 2023, pp. 11 493–11 504.

[165] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural coreference resolution,”
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017,
pp. 188–197.

[166] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text trans-
former,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[167] V. Sanh et al., “Multitask prompted training enables zero-shot task generalization,” in In-
ternational Conference on Learning Representations, 2022.

[168] S. Pradhan, A. Moschitti, N. Xue, O. Uryupina, and Y. Zhang, “Conll-2012 shared task:
Modeling multilingual unrestricted coreference in ontonotes,” in Joint conference on EMNLP
and CoNLL-shared task, 2012, pp. 1–40.

[169] H. Chen, Z. Fan, H. Lu, A. Yuille, and S. Rong, “PreCo: A large-scale dataset in preschool
vocabulary for coreference resolution,” in Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, Brussels, Belgium: Association for Compu-
tational Linguistics, Oct. 2018, pp. 172–181.

[170] S. Toshniwal, P. Xia, S. Wiseman, K. Livescu, and K. Gimpel, “On generalization in coref-
erence resolution,” in Proceedings of the Fourth Workshop on Computational Models of
Reference, Anaphora and Coreference, Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 111–120.

[171] D. Bamman, O. Lewke, and A. Mansoor, “An annotated dataset of coreference in En-
glish literature,” in Proceedings of the Twelfth Language Resources and Evaluation Con-
ference, Marseille, France: European Language Resources Association, May 2020, pp. 44–
54, ISBN: 979-10-95546-34-4.

[172] A. Daza and A. Frank, “A sequence-to-sequence model for semantic role labeling,” in
Proceedings of The Third Workshop on Representation Learning for NLP, 2018, pp. 207–
216.

145

[173] O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of molec-
ular biology, vol. 162, no. 3, pp. 705–708, 1982.

[174] H. W. Chung et al., “Scaling instruction-finetuned language models,” arXiv preprint arXiv:
2210.11416, 2022.

[175] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural language processing,”
arXiv preprint arXiv:1910.03771, 2019.

[176] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System optimizations en-
able training deep learning models with over 100 billion parameters,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 3505–3506.

[177] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward
training trillion parameter models,” in SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1–16.

[178] M. Joshi, O. Levy, L. Zettlemoyer, and D. S. Weld, “Bert for coreference resolution: Base-
lines and analysis,” in Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, pp. 5803–5808.

[179] J. Yu, A. Uma, and M. Poesio, “A cluster ranking model for full anaphora resolution,” in
Proceedings of the Twelfth Language Resources and Evaluation Conference, 2020, pp. 11–
20.

[180] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert: Improving
pre-training by representing and predicting spans,” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 64–77, 2020.

[181] P. Xia, J. Sedoc, and B. Van Durme, “Incremental neural coreference resolution in con-
stant memory,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 8617–8624.

[182] S. Toshniwal, S. Wiseman, A. Ettinger, K. Livescu, and K. Gimpel, “Learning to ignore:
Long document coreference with bounded memory neural networks,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2020, pp. 8519–8526.

[183] V. Dobrovolskii, “Word-level coreference resolution,” in Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, 2021, pp. 7670–7675.

arXiv:2210.11416
arXiv:2210.11416

146

[184] P. Xia and B. Van Durme, “Moving on from ontonotes: Coreference resolution model trans-
fer,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021, pp. 5241–5256.

[185] R. Thirukovalluru, N. Monath, K. Shridhar, M. Zaheer, M. Sachan, and A. McCallum,
“Scaling within document coreference to long texts,” in Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 3921–3931.

[186] Z. Wu and M. Gardner, “Understanding mention detector-linker interaction in neural coref-
erence resolution,” in Proceedings of the Fourth Workshop on Computational Models of
Reference, Anaphora and Coreference, 2021, pp. 150–157.

[187] B. Bohnet et al., “Attributed question answering: Evaluation and modeling for attributed
large language models,” arXiv preprint arXiv:2212.08037, 2022.

[188] T. Gao, H. Yen, J. Yu, and D. Chen, “Enabling large language models to generate text
with citations,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, 2023.

[189] Z. Liu, K. Zhang, C. Xiong, Z. Liu, and M. Sun, “Openmatch: An open source library
for neu-ir research,” in Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2021, pp. 2531–2535.

[190] H. Yen, T. Gao, and D. Chen, “Long-context language modeling with parallel context en-
coding,” in Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2024, pp. 2588–2610.

[191] Z. Zhang et al., “H2o: Heavy-hitter oracle for efficient generative inference of large lan-
guage models,” Advances in Neural Information Processing Systems, vol. 36, pp. 34 661–
34 710, 2023.

[192] A. Köpf et al., “Openassistant conversations - democratizing large language model align-
ment,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023.

[193] S. Reddy, D. Chen, and C. D. Manning, “CoQA: A conversational question answering
challenge,” Transactions of the Association for Computational Linguistics, vol. 7, L. Lee,
M. Johnson, B. Roark, and A. Nenkova, Eds., pp. 249–266, 2019.

[194] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, “DROP: A reading
comprehension benchmark requiring discrete reasoning over paragraphs,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J.
Burstein, C. Doran, and T. Solorio, Eds., Minneapolis, Minnesota: Association for Com-
putational Linguistics, Jun. 2019, pp. 2368–2378.

147

[195] A. Trischler et al., “NewsQA: A machine comprehension dataset,” in Proceedings of the
2nd Workshop on Representation Learning for NLP, P. Blunsom et al., Eds., Vancouver,
Canada: Association for Computational Linguistics, Aug. 2017, pp. 191–200.

[196] Q. Jin, B. Dhingra, Z. Liu, W. Cohen, and X. Lu, “PubMedQA: A dataset for biomedical
research question answering,” in Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 2567–2577.

[197] A. Rogers, O. Kovaleva, M. Downey, and A. Rumshisky, “Getting closer to ai complete
question answering: A set of prerequisite real tasks,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 05, pp. 8722–8731, Apr. 2020.

[198] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable questions
for SQuAD,” in Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), I. Gurevych and Y. Miyao, Eds., Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp. 784–789.

[199] D. Chen, J. Bolton, and C. D. Manning, “A thorough examination of the CNN/Daily Mail
reading comprehension task,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), K. Erk and N. A. Smith, Eds.,
Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 2358–2367.

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction
	Motivation
	Overview
	Contributions

	2 | Background
	Knowledge-Intensive Language Processing
	Entity-Centric Language Understanding

	I Knowledge-Intensive Language Processing
	3 | Hard Negatives in Noise Contrastive Estimation
	Introduction
	Background
	Hard Negatives in NCE
	Score Function
	Experiments
	Conclusions

	4 | Promoting Task Specialization For Multi-Task Retrieval
	Introduction
	Related Work
	Method
	Experiments
	Conclusions

	5 | Retrieval-Augmented Generation with Implicit Queries
	Introduction
	Related Work
	Method
	Experiment
	Analysis
	Conclusions

	II Entity-Centric Language Understanding
	6 | Entity Linking as Question Answering
	Introduction
	Model
	Experiments
	Related Work
	Conclusions

	7 | Sequence-to-Sequence Coreference Resolution
	Introduction
	Related Work
	Seq2Seq Methods
	Discussion
	Experiments
	Conclusions

	8 | Conclusions
	Summary
	Future Directions

	Appendices
	A | Appendix to Chapter 3
	B | Appendix to Chapter 4
	C | Appendix to Chapter 5
	D | Appendix to Chapter 6
	E | Appendix to Chapter 7

	Acknowledgment of Previous Publications
	References

